

SScc hhooooll ooff CCoommppuuttiinngg SScc iiee nnccee
UUnniivveerr ss iittyy ooff NNeewwccaasstt llee uuppoonn TTyynnee

SSuuppeerrvviissoorr ss :: DDrr.. AA.. WWiippaa tt ,, DDrr.. JJ.. LL.. LLllooyydd

TThhee AApppplliiccaattiioonn ooff SSeemmaannttiicc DDeepptthh ooff

FFiieelldd ttoo VViissuuaalliissaattiioonn PPrroobblleemmss

BBeenn LLooggaann

MMaayy 22000033

BBSScc ((HHoonn’’ss)) CCoommppuuttiinngg SScc iiee nnccee DDiisssseerr ttaatt iioonn

AAbbsstt rraacctt

There is a major problem associated with the vast improvements in computing
power and the expansion of technologies such as the World-Wide-Web. The problem is
the inability to perceive the resulting large amount of data without the assistance of some
visualisation technique. Data visualisation is an exciting and developing area of
Computer Science that attempts to address this problem. In particular, Semantic Depth of
Field is a recently proposed concept that applies the traditional focus techniques used in
photography to modern day Computer Graphics. The aim of this project was to develop
an application that demonstrated the potential of Semantic Depth of Field as well as any
other techniques that the extensive research may have revealed. An application was
designed and implemented in Java using the Java 3D API to address these aims. The
implementation was based on a modular design pattern to allow for the addition of
visualisation techniques that are not addressed by this project. The application, named
Java Visualisation System (or JVS), provides the user with views of a data model using
graph structures. The major conclusions of this project are that Semantic Depth of Field
is indeed a powerful visualisation technique, but that its implementation using current
technology requires an open-minded and innovative approach.

DDeeccllaa rraattiioonn

I declare that this dissertation represents my own work except where otherwise stated:

AAcckknnoowwllee ddggmmee nnttss

Many thanks are owed to Neil, for providing support and advice when it was
needed. I would like to thank Robert Kosara for his acknowledgement of this work and
for sharing his thoughts. Following successful integration with another project it also
seems sensible to thank the person behind that project, Jon Bainbridge. The author would
also like to thank his father for financial support throughout the duration of his degree
and his girlfriend for understanding…

CCoonnttee nnttss ::

11 IInnttrroodduuccttiioonn 11

 11..11 PP rroojjeecctt SSccooppee 44
 11..22 PP rroojjeecctt SSppeecciiffiiccaattiioonn 55
 11..33 PP rroojjeecctt MMaannaaggeemmeenntt 66
 11..44 DDiisssseerrttaa ttiioonn OOuutt lliinnee 88

22 BB aacckkggrroouunndd 99

22..11 TThheeoorryy && CCoonncceeppttss

22..11..11 VViissuuaalliissaatt iioonn 1100
22..11..22 SSeemmaannttiicc DDeepptthh ooff FFiiee lldd 1111
22..11..33 GGrraapphh TThheeoorryy && VViissuuaalliissaa ttiioonn 1144

22..22 TToooollss && TTeecchhnnoo llooggiieess
22..22..11 JJaavvaa 1177
22..22..22 JJaavvaa 33DD 1199
22..22..33 JJaavvaa 33DD –– FFoogg 2200
22..22..44 JJaavvaa 33DD –– LLiigghhtt 2222
22..22..55 JJaavvaa FFoouunnddaattiioonn CCllaasssseess && SSwwiinngg 2244
22..22..66 SSooffttwwaarree EEnnggiinneeeerriinngg TToooo llss 2244

22..33 AArrcchhiittee ccttuurree && DDeessiiggnn PPaatttteerrnnss
22..33..11 MMooddeell--VViieeww--CCoonnttrroo lllleerr 2266
22..33..22 MMooddeell--VViieeww--PPrreesseenntteerr 2288

33 DDeessiiggnn 3300

 33..11 OOvveerraa llll AApppp lliiccaattiioonn 3311
 33..22 TThhee DDaattaa MMooddeell 3333

33..33 TThhee GGrraapphh SSyysstteemm 3333
33..44 TThhee VViieewwss 3355
33..55 VViieeww 11:: SSeemmaannttiicc DDeepptthh ooff FFiiee lldd 3355
33..66 VViieeww 22:: EEmmiissssiivvee LLiigghhtt iinngg 3388

44 IImmppllee mmeennttaattiioonn 4400

 44..11 OOvveerraa llll AApppp lliiccaattiioonn 4411
 44..22 TThhee DDaattaa MMooddeell 4422
 44..33 TThhee GGrraapphh SSyysstteemm 4433

44..44 VViieeww 11:: SSeemmaannttiicc DDeepptthh ooff FFiiee lldd 4455
44..55 VViieeww 22:: EEmmiissssiivvee LLiigghhtt iinngg 4466

 44..66 CCooddee DDeessccrriippttiioonn –– CCoorree CCllaasssseess 4488
 44..66..11 CCllaassss MMooddeell 4488
 44..66..22 CCllaassss NNooddee 4488
 44..66..33 CCllaassss EEddggee 4488
 44..66..44 CCllaassss GGrraapphh33DD 4488
 44..66..55 CCllaassss GGrraapphh33DDPPaanneell 4499

 44..66..66 CCllaassss DDrraawwNNooddee 4499
 44..66..77 CCllaassss DDrraawwEEddggee 4499
 44..66..88 CCllaassss DDrraawwGGrriidd 4499
 44..66..99 CCllaassss CCoonnssttaann ttss 4499
 44..66..1100 CCllaassss HHttmmllVViieewweerr 4499
 44..66..1122 CCllaassss KKeeyyPPrriinn tt 5500
 44..66..1122 CCllaassss IInn tteerrsseeccttIInnff oo 5500
 44..66..1133 CCllaassss AAbboouu tt 5500
 44..66..1144 CCllaassss BBaacckkTTooooll 5500
 44..66..1155 CCllaassss OOff ffSSccrreeeenn 5500

 44..77 CCooddee DDeessccrriippttiioonn –– AAddddiitt iioonnaa ll CCllaasssseess 5511
 44..77..11 CCllaassss FFiilleeLLooaaddeerr 5511
 44..77..22 CCllaassss CCoonn ttrroo lllleerr 5511
 44..77..33 CCllaassss AApppp lliiccaa ttiioonn 5511
 44..77..44 CCllaassss MMooddeellFFiilltteerr 5511
 44..77..55 CCllaassss LLooaaddSSccrreeeenn 5511
 44..77..66 CCllaassss SSuunnGGrraapphh 5522
 44..77..77 CCllaassss SSuunnGGrraapphhPPaanneell 5522

55 TTeessttiinngg 5533

 55..11 FFuunncctt iioonnaall TTeessttiinngg 5544
 55..22 SSttrruuccttuurraa ll TTeessttiinngg 5544
 55..33 UUsseerr IInntteerrffaaccee TTeessttiinngg 5566
 55..44 EErrrroorr HHaannddlliinngg 5599

66 UUsseerr MM aannuuaall 6600

66..11 HHeellpp SShheeeett –– 11;; IInnssttaallllaa tt iioonn 6622
66..22 HHeellpp SShheeeett –– 22;; TThhee MMooddeell 6644
66..33 HHeellpp SShheeeett –– 33;; TThhee GGrraapphh 6666
66..44 HHeellpp SShheeeett –– 44;; OOppeerraa ttiioonn 6688
66..55 HHeellpp SShheeeett –– 55;; TThhee VViieewwss 7700
66..66 HHeellpp SShheeeett –– 66;; CCoonnttrrooll--PP aanneell 7722

77 RReessuullttss 7744

77..11 SSeemmaannttiicc DDeepptthh ooff FFiiee lldd 7755
77..22 EEmmiissss iivvee LLiigghhtt iinngg 8800
77..33 OOtthheerr RReessuullttss 8855
77..44 SSooffttwwaarree IInntteeggrraa ttiioonn 9933

88 DDiissccuussss iioonn 9955

88..11 SSuummmmaarryy ooff PP rrooggrraamm FFeeaattuurreess 9966
88..22 CCoommppllee tt iioonn ooff OObbjjeeccttiivveess 9966
88..33 FFuuttuurree WWoorrkk 9977
88..44 CCoonncclluuss iioonnss 9988

oo BB iibblliiooggrraapphhyy 110000

oo AAppppeennddiicceess ((CCDD--RROOMM))

 AAppppeenndd iixx AA SSoouurrccee CCooddee –– CCoorree CCllaasssseess
 AAppppeenndd iixx BB SSoouurrccee CCooddee –– AAddddiitt iioonnaa ll CCllaasssseess ((SSttaanndd--AAlloonnee))
 AAppppeenndd iixx CC DDooccuummeennttaattiioonn –– JJVVSS AAPP II
 AAppppeenndd iixx DD UUMMLL ddiiaaggrraammss –– CCoorree CCllaasssseess
 AAppppeenndd iixx EE UUMMLL ddiiaaggrraammss –– AAddddiitt iioonnaall CCllaasssseess ((SSttaanndd--AAlloonnee))
 AAppppeenndd iixx FF PPrreesseennttaa ttiioonn

 - 2 -

CChhaapptteerr OOnnee

IInnttrroodduuccttiioonn

 - 2 -

11 IInnttrroodduucc ttiioo nn

The world is a complex and multi-dimensional place; the paper and the screen are
static and flat. Communication between the readers of an image and the makers of an
image must take place on a two-dimensional surface. The essential task of information
visualisation is escaping this flatland. All of the interesting worlds (physical, biological
and human) that require a better understanding are multivariate in nature, not flatlands.1
The primary purpose of visualisation is to simulate the ‘real world’ thereby making vast
and complex data easier for humans to understand. Given recent technological advances
in a number of areas, including bioinformatics, there is an increasing amount of this vast
and complex data. That is the motivation for data visualisation (US ‘visualization’) and
the reason it has only recently been recognised as an important field of study.

 There is some confusion surrounding the differences between imaging, computer
graphics, and visualisation. It is crucial to distinguish between these areas so that the
targets that are set are realistic: 2

• Imaging, or image processing;
The study of 2D pictures, or images. This includes techniques to transform

(e.g. rotate, scale, and shear), extract information from, analyze, and enhance
images.

• Computer graphics;

The process of creating images using a computer. This includes 2D pa int-and-
draw techniques as well as more sophisticated 3D drawing (or rendering)
techniques.

• Visualisation;

The process of exploring, transforming, and viewing data as images to gain
understanding and insight into the data.

This project is concerned with large scale implementations of visualisation

solutions that aim to dramatically improve the user’s understanding of a given set of data.
The field of information visualisation is relatively young, and is developing fast, however
the approaches are numerous . Visualisation can range from simple computer graphics,
such as a curve illustrating numerical relationships to elaborate shapes illustrating far
more complex data sets, such as, metrological phenomena.30 Visualisation is a vast
subject and its applications can vary dramatically, in both scale and usefulness.

 A common feature of visualisation applications is the ability to direct the user’s
attention to certain objects. This can help alert the user to a problem or, perhaps, show the
matching objects in response to a query.26 The visualisation application that has been
created during this project strove to successfully implement such a feature. The aim of
this project was to evaluate a number of data visualisation aids and to implement an
application that employed a selected visualisation technique to aid in data visualisation. A
technique known as Semantic Depth of Field (SDoF)27 was the primary concern of this

 - 3 -

project and was used to blur irrelevant objects and focus on the relevant ones. SDoF is a
technique proposed recently by Robert Kosara26 at the Vienna University of Technology.
The method is based on the concept of blurring the non-relevant parts of the display and
retaining them in the view as context. Blurring objects based on their relevance is the key
idea behind Semantic Depth of Field.26 SDoF is based on the Depth of Field (DoF) effect,
which has its origins in photography. The idea behind Depth of Field (DoF) is that
objects are depicted sharply or blurred depending on their distance from the lens.
Semantic Depth of Field extends this effect to decide whether to display an object sharply
or blurred, not based on geometry, but on the objects current relevance.

Originally it was envisaged that the implementation would focus around a
biological data set, for the purposes of experimenting and testing. Although the
visualisation of the relationship between entities in complex biological systems is a very
real problem area, a more useful visualisation system would be flexible in its approach to
handling data input. One of the strongest aspects of the final program is its ability to
demonstrate its usefulness on a wide -range of data sets. As a starting point, it was
decided to apply Semantic Depth of Field to visualisation problems in graph drawing
systems. Graph structures are a very common tool often employed to represent the
relationships between any entities that this system may wish to model. To help in the
understanding and requirements analysis for the project, the Sun Graph-Layout applet 37
(Figure 1.1) was selected as the basis for further study. This dynamic graph system
provides run-time layout manipulation to ensure that the user is viewing the data in its
most presentable form. A Swing implementation of this application was made available
by Mr Oliver Shaw. Oliver has fixed a few of the problems with the original Abstract
Window Toolkit (AWT) version, and has made some improvements of his own.

Figure 1.1: A screen shot of the dynamic graph applet.37

The Graph-Layout applet produces a visual representation of some ‘nodes’ and

‘edges’ and shows the relationships (edges) between some entities (nodes) within a

 - 4 -

system. For larger data sets things quickly become complex and difficult to understand.
The aim of this project was to implement a program that allowed the user to highlight a
portion of this graph (or certain nodes/edges) in order to help them understand the given
data. To explain; imagine a large number of people (represented by nodes), if the user
attempted to analyse that data and there were hundreds of people floating around it would
be impossible to get an idea of any of the relationships or characteristics of the data. The
ideal application would have a button to, for example, highlight all males or highlight all
couples. That functionality could instantly improve the user’s understanding of the data.
The result of the project was a generic set of Java classes that can be used to implement a
graph layout system for user applications, including Semantic Depth of Field. The results
are discussed in more detail in Chapter 7.

11.. 11 PPrroojjeecctt SSccooppee

 There is no shortage of motivation for this project. Although examples of three-
dimensional computer graphics are numerous, information visualisation work in three
dimensions is still novel.3 The field of information visualisation especially in the context
of 3D computer graphics is young and developing fast. Information visualisation has only
recently been recognised as a field of study in its own right and work in the area has
grown significantly over the last few years.31 Since this project was started in September,
2002, there have been noticeable developments in the area of information visualisation.
Indeed there has been recent recognition that information visualisation combined with
data-mining techniques could result in an even more useful end product.

 Researchers in information visualisation believe in the importance of giving users
an overview and insight into data while data mining researchers believe that statistical
algorithms and machine learning can be relied on to find interesting patterns. It is
recognised that a combined approach could lead to novel discovery tools.21,32 Although
that is outside the scope of this project; one of the primary objectives was to develop a
piece of software that was flexible enough to be easily integrated with such a system. Due
to the modularity of design and flexibility of the data model this integration was achieved
and the results are presented in Chapter 7.

This project follows on from an MSc project of a similar title that was completed
just prior to the commencement of work on this project. That dissertation made the
observation that the Java 3D API did not provide an in -built blur effect, and because of
that, the work centred around creating a blur effect from the features that were
available.22 Although it is true that Java 3D has no facility to implement blur directly, the
Application Programming Interface (API) does provide a fog function which, it was
hoped, would be capable of achieving the desired effect. However, there was a potential
problem with the use of fog; it works differently to a traditional implementation of blur,
blending colours instead of reducing the definition of an object.22 Rather than be
concerned with the specifics of blur, this project regards the aims of Semantic Depth of
Field as the principle factor in determining whether the application is achieving the
desired effect. The technique uses the concept of relevancy; fogging can display the
relevancy of one object in relation to another by using depth cueing, i.e. setting the non-

 - 5 -

relevant object further back than the relevant object. It is important to highlight these
differing opinions so as to make sure that this project is not perceived as overlapping with
any previous work.

This title provided an excellent opportunity to pursue original research. The work
carried out during the course of this project has genuinely not been undertaken before.
This is an interesting and exciting application of technology and, more importantly, it has
the potential to be very useful to scientists across a range of fields.

11.. 22 PPrroojjeecctt SSppeecc iiff iiccaatt iioonn

 The aim of this project was to evaluate the use of Semantic Depth of Field (SDoF)
as a method for aiding data visualisation. The expected outcome of this project was a
working implementation of some data visualisation aids. Remembering the key principles
of visualisation; it does not matter how good a technique is in terms of its efficiency, its
ingenuity in design, or the pleasing pictures it produces – it must convey information to
the user efficiently and effortlessly.17 Although the specific aim was to successfully
implement Semantic Depth of Field, the overall end-product should be a tool that will
improve the user’s understanding of a given data set.

“The field of computer-based information visualisation is about creating tools that
exploit the human visual system to help people explore or explain data. Interacting with a
carefully designed visual representation of data can help us form mental models that let
us perform specific tasks more effectively.” 20

The above quote sums the topic up beautifully. This is a data visualisation project.
The original project requirements have been slightly refined and are defined as follows:

1. Create a graph visualisation system that incorporates facilities for highlighting
portions of the graph using Semantic Depth of Field.

2. The program will implement the Java 3D fog effect on a group of nodes and

there will be an intelligent discussion of the results in relation to the aims and
objectives of Semantic Depth of Field (SDoF).

3. The application will attempt to implement an Emissive Lighting effect on a

group of nodes, with the aim of further improving visualisation.

4. The application will be flexible in design so that it could be easily adapted to

suit visualisation problems in other fields with different input data.

5. There will be implementation of a dynamic graph algorithm, with the aim of
creating nodes that appear to move in and out of the fog.

6. The application will combine the above visualisations with the Sun Graph-

Layout applet 37 to provide some new views on the underlying data model.

 - 6 -

7. The application will be downloadable from a web page that provides support

for its use and examples of its output.

11.. 33 PPrroojjeecctt MMaannaa ggeemmee nntt

 A “software development process model” is a description of the work practices,
tools, and techniques used to develop software. The development of the software during
this project followed a model in order to ensure systematic working and the completion
of objectives. The waterfall method is a well-known model that consists of the following
stages:

• Requirements
• Design
• Implementation
• Testing
• Maintenance & Review

Each stage feeds into the next. The purpose of the requirements stage

(requirements analysis) is to understand and clarify the requirements and often involves
resolving the conflicting views of different users. The next stage is concerned with the
production of a document, the specification, which defines as accurately as pos sible the
problem to be solved. The requirements analysis and specification are often regarded as
the most difficult tasks in software development.4

Having defined what the system is to achieve, the next step is to design a solution

and implement the design on a computer. It is at this, the implementation stage, that the
programming language becomes directly involved.4

The aim of testing is to show that the implemented solution does what the user
expects and satisfies the original specification. One of the problems with testing is that it
can only show the presence of errors, it can never prove their absence.

The final stages of software development covers two distinct activities:

• The correction of errors that were missed at an earlier stage but have been
detected after the program has been in active service.

• Modification of the program to take account of additions or changes in the users’
requirements.

The last stage is outside the scope of this project, though it is important when

designing the program to bear it in mind as maintenance, as well as changes or updates,
may need to take place in the future. There are numerous advantages of using the
waterfall method:

• Every stage produces a concrete deliverable.

 - 7 -

 -Requirements documents, code, etc.
• Provides simple measure of development status.

 -What phase are we in?
• All of the most widely used methods are underpinned by the waterfall method.
• All the research is done before the coding begins, this will inevitably lead to

better quality program design.

Here are the relevant disadvantages of using the waterfall method:

• Difficult to accurately and completely specify requirements prior to any
implementation.

• Phase of development does not necessarily reflect progress toward
completion. Entering testing could mean 80% or 20% completion.

• One phase must be completed before proceeding onto the next.

It was decided to adopt the waterfall model of software development. The reason

is that most final year projects fall into a well-defined category:

• Problem (given to the student)
• Analysis: refine and detail the problem
• Design: produce a specification

 - Architecture (subsystem overview)
 - Data, interfaces, processes

• Code
• Test
• Final Report & demonstration

A project with these distinguishable features can be easily matched to the
Waterfall model of software development.

 “A wide variety of ‘flexible’ models of software development are available as
alternatives to the traditional waterfall model. We find that, while some characteristics of
a more flexible process have a negative impact on performance when considered alone,
these potential ‘trade -offs’ disappear when considered in combination with other
attributes of a more flexible process.” 16

Given that argument, the development of the program will, in actual fact, be more
flexible than the traditional waterfall approach. The Gantt chart that follows highlights
the key stages in this project and gives an idea as to when they each took place.

 - 8 -

Figure 1.3.1: The Project Plan.

11.. 44 DDiissss eerrttaa tt iioonn OOuutt lliinnee

Chapter 2 of this dissertation provides all the necessary background information
for this project. It starts with a discussion of the relevant theories and concepts and moves
on to cover the tools and technologies used in creating a solution to the given problem.

 Chapter 3 discusses the design issues relating to the application itself. It provides
an overview of the application and then comments on the design issues relevant to each
of the main aspects of the software.

Chapter 4 takes an in-depth look at the implementation of the software and
includes a code-description for each of the classes in the system.

 Chapter 5 includes a discussion of the testing strategies.

 Chapter 6 contains the user manual for the software. It includes help sheets for the
installation, operation and integration of the software developed.

 Chapter 7 presents the results of the program in the context of the aims of
Semantic Depth of Field, and data visualisation as a whole. The results of the integration
with a data-mining application are also discussed in this chapter. Integration is not
mentioned in the design or implementation because those stages focussed on the
development of a package of classes that would be flexible enough to allow for
integration, but the integration was not physically built into the system; it was made
possible by flexible, modular design of the software.

 Chapter 8 analyses to what extent the original objectives, as set out in this chapter,
have been met. It then makes some conclusions regarding the work carried out, as well as
making a comment on future areas for development within the application.

 - 9 -

CChhaapptteerr TTwwoo

BBaacckkggrroouunndd

 - 10 -

22 BBaacckkgg rroo uunndd

22..11 TThhee oorryy && CCoo nnccee ppttss

22.. 11.. 11 VViiss uuaalliiss aatt iioonn

To gain an appreciation for the purpose, requirements and specification of the

software developed during this project, some of the basic concepts of data visualisation
are reviewed in this section.

The goal of visualisation research is to transform data into a perceptually efficient

visual format. It is necessary to say something about the types of data that can exist to be
visualised. Bertin (1977) suggested that there are two fundamental forms of data: data
values and data structures. More recently it has been accepted that a better way to express
this idea is to divide data into entities and relationships.8 Entities are objects that user
wishes to visualise; relationships (or relations) define the structures and patterns that
relate entities to one another. In the context of this work the concept of entities and
relationships relates closely to graph theory and the representation of this data. Entities
can be considered to be the nodes of the graph, it is these that are to be visualised.
Relations can be thought of as the edges of the graph. The only difference that needs to
be highlighted is that not all nodes are being visualised; technically there are nodes in the
graph that are not entities, in the visualisation sense of the word. The closeness of this
mapping is the core reason that the final program can be so flexibly applied to other
sources of data. There is a more thorough discussion on graphs later in this chapter, for
now just consider the data at an abstracted level. There are clearly distinguishable stages
to visualisation: 8

• The collection and storage of data itself.
• The pre-processing designed to transform the data into something the user can

understand.
• The display hardware and the graphics algorithms that produce an image on the

screen.
• The human perceptual and cognitive system (the perceiver).

Visualisation has the potential to yield some major benefits. The list that follows

is impressive, but it is crucial to realise that these are potential benefits, and that a
visualisation technique that is successful in all of these areas would be very challenging
to implement. Visualisation can:

• Help a user comprehend huge amounts of data.
• Allow the user to notice properties of the data that were not anticipated.
• Help facilitate the understanding of both large-scale and small-scale features of

the data.
• Enable problems with the data itself to become immediately apparent. It is

common for a visualisation to reveal not only things about data itself, but about
the way it is collected.

 - 11 -

• Help to facilitate hypothesis information.

The reason visualisation can be so effective is that it uses one of the channels to
the human brain that has a high bandwidth: the eyes.26 As with most things though, this
channel can be used more or less efficiently. A successful visualisation allows for a large
amount of understandable data to be transferred to the brain, and for that data to be
perceived in a very short period of time. That can be quite a challenge.

To summarise, the field of information visualisation is only a few years old, but it

is growing rapidly and so is recognition that visualisation will play an important role in
many future applications. In the future processor speed will no doubt continue to grow
according to Moore’s Law, but it is expected that the amount of data to process will
increase even faster.20 There is little doubt that this explosion of data poses problems,
especially in the area of human perception and the understanding of this data. The data
collection is not an end itself, but a means to the end of helping humans deal with the
world.20 Visualisation lets humans claw their way through these mountains of data,
making decisions based on a more sound understanding. Visualisation is necessary
because although the human visual system is very flexible, it is tuned to receiving data
presented in certain ways, but not in others.8 The understanding of this mechanism is the
key to the science of visualisation; it will result in the production of high-quality displays.

 Focussing on the way in which visualisation was to be used in this project; it is
accepted that there are multiple ways to visualise a given data set.7 Geometric objects can
be used to represent individual data entities, they can be coloured, animated or
transformed (change of orientation). Although this project is aimed primarily at
implementing one particular technique for visualisation (Semantic Depth of Field), it was
recognised at an early stage that alternatives may appear during the course of the project.
The next section discusses the research done in the area of Semantic Depth of Field and
‘focus & context’ visualisation.

22.. 11.. 22 SSee mmaanntt iicc DDee pptthh ooff FFiiee lldd

Pointing the user to the parts of a visual display that are currently the most
relevant is an important task in information visualisation. The same problem exists in
photography, where a number of solutions have been known for a long time. One of these
methods is Depth of Field (DoF), which depicts objects in or out of focus depending on
their distance from the camera (Figure 2.1.2.1). There have been surprisingly few
attempts to use Depth of Field or blur in visualisation. There are approaches that use blur
in a limited way, but few of them are based on a thorough model or founded out of in-
depth research in perceptual psychology.27

 - 12 -

Figure 2.1.2.1: The use of DOF to retain a distant bridge as context.29

A recent paper proposes the generalisation of this idea to a concept known as

Semantic Depth of Field (SDoF)27, where the sharpness of objects is controlled by their
current relevance, rather than their distance from the camera lens. This enables the user to
quickly switch between different sets of criteria without having to get used to a different
visualisation layout or geometric distortion.

 The blurring of objects by Depth of Field, in photography, depends solely on their
spatial depth within the scene. In contrast with this approach, Semantic Depth of Field
provides blurring based on the semantics of the scene. The general approach is to use blur
to de-emphasise context objects.27 After Semantic Depth of Field has been ‘turned on’ the
user can still see the features of relevant objects without having to adapt to a different
kind of display. This is a key reason for the success of SDoF and it seems crucial that this
characteristic is maintained in any implementation of the technique.

 The details regarding the specific functioning of blur belong in perceptual
psychology. Basically blur works by using a visual feature that is inherent in the human
eye and therefore blur is perceptually effective. Research has shown that Semantic Depth
of Field is a pre-attentive process and not significantly slower than colour, as was
previously thought.26 That is the justification for this project; it is known that the use of
blur is perceptually effective and therefore practical investigation into possible solutions
is warranted. Given that blur has the advantage of working independently of colour, it can
be useful for black and white images as well as for providing visualisation to colour-blind
users.26

 - 13 -

The concept of Semantic Depth of Field relies on a process of finding sharp
targets among blurred distracters (contextual objects). This process is performed pre -
attentively and this is an important property of SDoF; the perception takes place in a very
short time (usually within ten milliseconds).17

 “[Pre-attentive processes] are performed in a highly parallel way, no serial search
is performed. The viewer immediately perceives the one object which is different from all
others, there is no need for examining all objects one after the other.” 27

The reason that the human brain is so fast to notice these differences in depth is
that human perception divides our field our view into two categories; those objects that
are in the foreground and those that are in the background (or preferred and non-
preferred stimuli 5). This division is semantic, it does not depend on the physical
positions of objects – closer objects could be considered background objects while more
distant ones could become foreground objects.26 Semantic Depth of Field can assist the
human eye in establishing this division: a blurred object will become part of the semantic
background while a target object will remain in the foreground.26

The argument is that by blurring irrelevant aspects of a data set and leaving

everything else un-touched the programmer can trick the brain into categorising (relevant
& non-relevant) the data thereby improving data visualisation. A chess board is
commonly used to demonstrate the effective use Semantic Depth of Field:

Figure 2.1.2.2: The board in 2D and 3D, with no use of visualisation aids.27

Figure 2.1.2.3: The same board, this time with the application of SDoF. 27

 - 14 -

The second figure shows how effectively Semantic Depth of Field can be used to
highlight relevant parts of the display. In this case the relevant parts of the display are
those chess pieces covering the white knight, they appear sharply and the other non-
relevant parts of the display are blurred.

At the time of writing, a project to look into this technique (SDoF) was still
gathering pace. It was founded in autumn of 2000 and is a joint research activity between;

1.) The research on information visualisation at the Institute of Software Technology
at Vienna University of Technology, Austria.

2.) The basic research on visualisation at VRVis, Vienna, Austria.

There were some key findings made by this report, they are summarised as
follows: 17

• Semantic Depth of Field can be used to quickly and effectively guide the user’s
attention.

• Semantic Depth of Field makes it possible to discriminate between a small
number (about two to four) of object groups.

• Interaction is very important; people do not like looking at blurred objects (if they
do so, the application is badly designed).

• Blurred text should remain readable.
• Things that do not need to be blurred should not be blurred.

These points will be given much consideration when it comes to the design and

implementation of a solution. One other issue, highlighted in that report, is that it is
perceptually difficult to identify objects of the same level of blur.17 This is a problem with
using blur, however, with only two blur levels the user would be aware that there were
only two possibilities and that all blurred objects belonged to one group. The user will
never need to distinguish between those objects that are blurred because there would be
no difference between them. As mentioned earlier, work in this field is still gathering
pace, but the results so far are very promising. The study into Semantic Depth of Field
has revealed a lot of interesting information, but it is acknowledged that it is only a first
step.17

22.. 11.. 33 GGrraa pphh TThheeoorryy && VViissuuaa lliissaa tt iioonn

 The most general mechanism for representing relations between data is the graph.
Graphs are demanding to construct but, as a result, they can represent more detail
information. The versatility of graphs allows them to represent many of the most difficult
theoretical problems that exist in Computer Science.13 A graph can be described as an
abstract mathematical structure defined from two sets; a set of nodes and a set of edges
that form connections between nodes (see Figure 2.1.3.1). More formally:

A graph G = (V, E) is composed of a finite (and non-empty) set V of nodes and a set E of
unor dered pairs of nodes.

 - 15 -

V = {n1, n2, …, nm}
&

E = {e1, e2, …, ep}

Where each edge ek = {ni, nj} for some nodes ni, nj that are members of the set V.

a

a

a

b c

d

b c e

d c

c

b

b
a

d e

f

S

G

Figure 2.1.3.1; Each node a is adjacent to node b, but never to d. Graph G has two

components, one of which is S. Only the top left graph is complete.13

‘Data Visualisation’ can be defined as an approach in which a computer-

generated visual representation is used to improve our understanding of some data. In its
simplest form, that could mean turning numbers into pictures. This project focused
primarily on these ‘visual representations’ and not the data itself. The aim was to create a
system that can be adjusted with relative ease to suit various forms of data and scenarios.
However, it is important to recognise that to successfully implement a visualisation
technique would require an environment in which to test any possible solutions.

 Across a range of fields such as software engineering, telecommunications, and
financial analysis graphs are commonly used to model information.23 Graphs are a useful
way of presenting data and graph drawing is an area of much research and discussion.
The discipline of graph drawing is concerned with methods for drawing abstract versions
of node/edge diagrams. At the heart of the discipline are a set of graph aesthetics (rules
for graph layout) that, it is assumed, will produce graphs that can be clearly understood.28

There was the potential for involving complex graph display algorithms. This is a

field of study in its own right and was not allocated much time in this project for this
reason. There was an analysis of the workings of the Sun Graph-Layout applet

 - 16 -

implementation37, for the purposes of understanding its operation. The software did go on
to implement a modification of that algorithm under slightly different circumstances. The
graph layout algorithms and data structures were not of the up-most importance; though it
is obvious that there is scope for another project to tackle these issues. The graph drawing
algorithm at work in the Sun Graph-Layout applet 37 is based on the Force-Directed
approach. These algorithms are intelligent methods for creating straight-line drawings of
undirected graphs. They are popular due to the fact that their basic versions are relatively
easy to understand. A force-directed algorithm simulates a system of forces defined on an
input graph, and outputs a locally minimum energy configuration.10

Given that the application behind this dissertation was defined as a graph

visualisation system it is important to distinguish between the two key words in that title;
‘graph’ and ‘visualisation’. Even more than in 2D, the display of graphs in 3D is a two-
fold task: 24

1. Layout phase;

The drawing of the graph aesthetically.
2. Presentation phase;

The application of viewing strategies, techniques and tools to present a
meaningful view on the graph to the observer.

This project is more concerned with the ‘presentation phase’ and was using a

graph system merely to demonstrate the actual application of theories such as Semantic
Depth of Field. One issue that does need consideration when dealing with graphs is their
representation (modelling) of data. The system currently models nodes and edges as Java
objects (with coordinate parameters) and the data model stores arrays of these objects.
There was exploratory programming with matrix representations but this is outside the
scope of this visualisation project and matrices do not appear to have the same
importance as they once did in graph science. Matrices are rarely used to represent graphs
anymore, largely due to the proliferation of zeros that occurs in matrix representations of
all but the densest graphs.11

 - 17 -

22..22 TToooollss && TTee cchhnnoo llooggiiee ss

22.. 22.. 11 JJaavvaa

The Java platform is based on the power of networks and the idea that the same
software should run on many different kinds of computers. Since its initial commercial
release in 1995, Java technology has grown in popularity and usage because of its
portability. The Java platform allows you to run the same Java application on lots of
different kinds of computers. Any Java application can easily be delivered over the
Internet, or any network, without operating system or hardware platform compatibility
issues. Java is an object orientated programming language and the object-orientated
facilities of Java are essentially those of C++, with extensions from Objective C for more
dynamic method resolution.

With most programming languages, you either compile or interpret a program so
that you can run it on your computer. The Java programming language is unusual in that
a program is both compiled and interpreted. With the compiler, first you translate a
program into an intermediate language called Java bytecodes - the platform-independent
codes interpreted by the interpreter on the Java platform. The interpreter parses and runs
each Java bytecode instruction on the computer. Compilation happens just once;
interpretation occurs each time the program is executed.

Figure 2.2.1.1: The relationship between the compiler and interpreter.38

Java byte-codes can be thought of as the machine code instructions for the Java

Virtual Machine (JVM). Every Java interpreter, whether it is a development tool or a
Web browser that can run applets, is an implementation of the JVM. Java bytecodes help
make portability possible. A programmer can compile a program into bytecodes on any
platform that has a Java compiler. The bytecodes can then be run on any implementation
of the Java Virtual Machine (JVM). That means that as long as a computer has a JVM,
the same program written in the Java programming language can run on a Windows
machine, a UNIX workstation, or on a Mac.

 - 18 -

Figure 2.2.1.2: Java is a platform-independent programming language.38

A platform is the hardware or software environment in which a program runs.
Most platforms can be described as a combination of the operating system and hardware.
The Java platform differs from most other platforms in that it's a software-only platform
that runs on top of other hardware-based platforms. The Java platform has two
components:

• The Java Virtual Machine (JVM)
• The Java Application Programming Interface (Java API)

The Java Virtual Machine is the base for the Java platform and is ported onto
various hardware-based platforms. The Java Application Programming Interface (API) is
a large collection of ready-made software components that provide many useful
capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into
libraries of related classes and interfaces; these libraries are known as packages. The
following figure depicts a program that is running on the Java platform.

Figure 2.2.1.3: The Java API and the VM insulate the program from the hardware.38

Native code is code that after you compile it, the compiled code runs on a specific

hardware platform. As a platform-independent environment, the Java platform can be a
bit slower than native code.

The most common types of programs written in the Java programming language
are applets and applications. An applet is a program that adheres to certain conventions
that allow it to run within a Java-enabled web browser. The aim of this project was to
develop a Java application, although if there had been time the changes necessary to
allow the program to run as an applet would have been implemented. Every full

 - 19 -

implementation of the Java platform provides the programmer with the following
features:

• Essentials: Objects, strings, threads, numbers, input and output, data structures,
system properties, date and time, and so on.

• Applets: The set of conventions used by applets.
• Networking : URLs, TCP (Transmission Control Protocol), UDP (User Datagram

Protocol) sockets, and IP (Internet Protocol) addresses.
• Internationalisation: Help for writing programs that can be localized for users

worldwide. Programs can automatically adapt to specific locales and be displayed
in the appropriate language.

• Security: Both low level and high level, including electronic signatures, public
and private key management, access control, and certificates.

• Software components: Known as JavaBeans, can plug into existing component
architectures.

• Object serialisation: Allows lightweight persistence and communication via
Remote Method Invocation (RMI).

• Java Database Connectivity (JDBC): Provides uniform access to a wide range of
relational databases.

The Java platform also has APIs for 2D and 3D graphics, accessibility, servers,
collaboration, telephony, speech, animation, and more. The Java 3D Application
Programming Interface (API) is of particular interest to this project and is the focus of the
next section.

22.. 22.. 22 JJaavvaa 33DD

Java 3D is a high level, scene graph based Application Programming Interface
(API). Java 3D uses either DirectX or the OpenGL low level API to take advantage of 3D
hardware acceleration. This maintains the platform-independent aspect of the Java
language and provides the high level of performance achieved by the lower level APIs.

Java 3D provides an interface for writing programs to display and interact with
three-dimensional graphics. Java 3D is a standard extension to the Java 2 Software
Development Kit (SDK). The API provides a collection of high-level constructs for
creating and manipulating 3D geometry and structures for rendering that geometry. Java
3D provides the functions for creation of imagery, visualisations, animations, and
interactive 3D graphics. The Java 3D API is a hierarchy of Java classes which serve as
the interface to a sophisticated three-dimensional graphics rendering and sound rendering
system. The programmer works with high-level constructs for creating and manipulating
3D geometric objects. These geometric objects reside in a virtual universe, which is then
rendered. The API is designed with the flexibility to create precise virtual universes of a
wide variety of sizes, from astronomical to subatomic.

A Java 3D program creates instances of Java 3D objects and places them into a
scene graph data structure. The scene graph is an arrangement of 3D objects in a tree

 - 20 -

structure that completely specifies the content of a virtual universe, and how it is to be
rendered. Much like standard Java applications, Java 3D programs can be written to run
as stand alone applications, or as applets in browsers which have been extended to
support Java 3D.

The Java 3D Application Programming Interface (API) defines over 100 classes
presented in the javax.media.j3d package. These classes are commonly referred to as the
Java 3D core classes. In addition to the Java 3D core package, other packages are used in
writing Java 3D programs. One such package is the com.sun.j3d.utils package that is
commonly referred to as the Java 3D utility classes. The core class package includes only
the lowest-level classes necessary in Java 3D programming. The utility classes, on the
other hand, are convenient and powerful additions to the core. The utility classes fall into
four major categories:

• Content loaders
• Scene-graph construction aids
• Geometry classes
• Convenience utilities

Using utility classes significantly reduces the number of lines of code in a Java
3D program. One of the aims of this project is to utilise these utility classes when
implementing the program. In addition to the Java 3D core and utility class packages,
every Java 3D program uses classes from the java.awt package and javax.vecmath
package. The java.awt package defines the Abstract Windowing Toolkit (AWT). These
classes create a window to display the rendering. The javax.vecmath package defines
vector math classes for points, vectors, matrices, and other mathematical objects.

 The next section will look at a central feature of Java 3D known as environment
nodes. These environment nodes proved to be the key to how best implement the
visualisation solutions. A good strategy for designing a visualisation is to transform the
data so that it appears like a common environment – a kind of data landscape. The hope
then is that skills obtained in interpreting the real environment can be transferred to
understanding the given data.8 Environment nodes affect the environment in an area of
the virtual universe. They are not directly visible, but instead they change the space in
which the shape nodes are viewed. Light and fog are two such environment nodes and
these were used to help implement the visualisation improvements that are at the core of
this project.

22.. 22.. 33 JJaavvaa 33DD -- FFoogg

Fog nodes, as their name suggests, simulate atmospheric effects like fog or
smoke. They can be used to increase the realism of a scene by fading the appearance of
objects that are farther from the viewer. Fog nodes are designed to simulate the way in
which real-world objects appear to fade into the background when viewed from a
distance.6

 - 21 -

Fog is a surprisingly useful feature that can not only increase the realism of your
scenes, but can also improve overall performance by allowing you to reduce the amount
of detail required for objects positioned far away from the viewer. In the real world,
distant objects seem to fade somewhat because the light reflected from them has to travel
farther through the earth’s atmosphere to reach your eyes. Depending on atmospheric
conditions, this fading effect can be quite extreme. The use of fog is sometimes referred
to as ‘depth cueing’ because it gives the brain a visual cue as to the depth of an object in
the scene; it is in this context that fog has the potential to assist in the implementation of
Semantic Depth of Field.6 Fog is implemented in Java 3D by blending the fog colour with
the colour of the objects in the scene based on distance from the viewer. The farther away
an object is from the viewer, the more it gets blended with the fog colour. Java 3D
supports the following two basic types of fog:

• Linear Fog has a constant density, so that an object that is twice as far away
appears to be twice as “fogged”.

• Exponential Fog has a density that approximates the way fog appears in the real
world.

 Given that linear fog is useful for ‘depth cueing’ and exponential fog is more
suited to simulating atmospheric effects the implementation of fog to simulate the
blurring of objects would best use the linear fog function available in Java 3D.6 Linear
fog has a pair of distance values that define the “fog bank”. Anything closer than the
front distance is not fogged at all, anything beyond the back distance is completely
obscured by the fog (it is drawn in the fog colour), and anything in between the two
distances is fogged depending on the distance.

java.lang.Object
 |
 +--javax.media.j3d.SceneGraphObject
 |
 +--javax.media.j3d.Node
 |
 +--javax.media.j3d.Leaf
 |
 +--javax.media.j3d.Fog
 |
 +--javax.media.j3d.ExponentialFog
 +--javax.media.j3d.LinearFog

public abstract class Fog extends Leaf

Fig 2.2.3.1: The position of the Fog classes in relation to the rest of the Java 3D library.

 The Fog leaf node defines a set of fog parameters common to all types of fog.
These parameters include the fog colour and a region of influence in which this Fog node
is active. A Fog node also contains a list of Group nodes that specifies the hierarchical
scope of this Fog. If the scope list is empty, then the Fog node has universe scope: all
nodes within the region of influence are affected by this Fog node. If the scope list is non-
empty then only those Leaf nodes under the Group nodes in the scope list are affected by
this Fog node (subject to the influencing bounds).

 - 22 -

 If the regions of influence of multiple Fog nodes overlap, the Java 3D system
will choose a single set of fog parameters for those objects that lie in the intersection.
This is done in an implementation-dependent manner, but in general, the Fog node that is
"closest" to the object is chosen.

 The ExponentialFog leaf node extends the Fog leaf node by adding a fog density
that is used as the exponent of the fog equation. The density is defined in the local
coordinate system of the node, but the actual fog equation will ideally take place in eye
coordinates. The fog blending factor, f, is computed as follows:

f = e-(density * z)

Where z is the distance from the viewpoint.

In addition to specifying the fog density, exponential fog lets you specify the fog
colour, which is represented by R, G, and B colour values, where a colour of (0,0,0)
represents black.

The LinearFog leaf node defines fog distance parameters for linear fog.
LinearFog extends the Fog node by adding a pair of distance values, in Z, at which the
fog should start obscuring the scene and should maximally obscure the scene. The front
and back fog distances are defined in the local coordinate system of the node, but the
actual fog equation will ideally take place in eye coordinates.

The linear fog blending factor, f, is computed as follows:

f = backDistance - z / backDistance - frontDistance

Where z is the distance from the viewpoint.
frontDistance is the distance at which fog starts obscuring objects.
backDistance is the distance at which fog totally obscures objects.

22.. 22.. 44 JJaavvaa 33DD -- LLiigghhtt

These environment nodes are responsible for lighting the scene. The various types
of light available are:

• Directional light; These provide a simple, fast light type that simulates light from

a distant source, such as the sun.
• Point light; Position the light at a point in space like the light from a bare light

bulb.
• Spot light; These are like the point light which can be focussed in a particular

direction.
• Ambient light; This simulates the diffused light that fills a room, lighting areas

that are not directly illuminated.

 - 23 -

After a lot of prototyping and exploratory programming (following initial
research) it was decided that any of the above methods would be far to complicated to
successfully implement, and to be dynamic would have required moving light sources.
What was needed was a way of lighting a given shape, and that was not really provided
by the above functions. This frustration lead to further research and experimentation and
the discovery of a more likely and novel approach.

An interesting idea that this project has produced is the idea of “glow in the dark”
nodes. This could be made possible through the use of emissive colouring. Emissive
colour in Java 3D is not actually a light node. Emissive colour is the colour of the object
independent of any light sources. It produces glowing colours that appear to emanate
from within the shape itself. Whereas a diffuse colour might be used to colour a light
bulb that has not been lit up, an emissive colour can be used to render a light that is
turned on; light appears to be emitted from within the bulb, making it glow. The result is
that a shape has a constant colour. This is similar to ambient colouring; the difference is
that the emissive colouring is independent of any lights, while the ambient colouring is a
combination of the ambient colour and the ambient light colour.

Although emissive colours seem to create shapes that emit lights, they do not
actually illuminate objects around them (objects with emissive colours do not act as light
sources). This would help to ensure that there was no interference between the numerous
nodes in the graph visualisation system.

java.lang.Object
 |
 +--javax.media.j3d.SceneGraphObject
 |
 +--javax.media.j3d.NodeComponent
 |
 +--javax.media.j3d.Material

public class Material extends NodeComponent

Fig 2.2.4.1: The position of the Material class in relation to the rest of the Java 3D library.

The Material object defines the appearance of an object under illumination. If the
Material object in an Appearance object is null, lighting is disabled for all nodes that use
that Appearance object. The properties that can be set for a Material object are:

• Ambient colour; The ambient red-green-blue (RGB) colour reflected off the
surface of the material. The range of values is 0.0 to 1.0. The default ambient
colour is (0.2, 0.2, 0.2).

• Diffuse colour; The RGB colour of the material when illuminated. The range of
values is 0.0 to 1.0. The default diffuse colour is (1.0, 1.0, 1.0).

• Specular colour; The RGB specular colour of the material (highlights). The range
of values is 0.0 to 1.0. The default specular colour is (1.0, 1.0, 1.0).

• Emissive colour ; The RGB colour of the light the material emits, if any. The
range of values is 0.0 to 1.0. The default emissive colour is (0.0, 0.0, 0.0).

 - 24 -

• Shininess; The material's shininess, in the range [1.0, 128.0] with 1.0 being not
shiny and 128.0 being very shiny. Values outside this range are clamped. The
default value for the material's shininess is 64.

22.. 22.. 55 JJaavvaa FFoouunnddaa tt iioonn CCllaasssseess && SSwwiinngg

The Java Foundation Classes (JFC) consist of a group of features to help
programmers build graphical user interfaces (GUIs). The JFC was first announced at the
1997 JavaOne developer conference and is define d as containing the following features:

• The Swing Components;
Include everything from buttons to split panes to tables.

• Pluggable Look and Feel Support;
Gives any program that uses Swing components a choice of looks and

feels. For example, the same program can use either the Java look and feel or the
Windows look and feel.

• Accessibility API;
Enables assistive technologies such as screen readers and Braille displays

to get information from the user interface.
• Java 2D API;

Enables developers to easily incorporate high-quality 2D graphics, text,
and images in applications and in applets.

• Drag and Drop Support;
 Provides the ability to drag and drop between a Java application and a
 native application.

The first three JFC features were implemented without any native code, relying
only on the API defined in JDK 1.1. As a result, they could and did become available as
an extension to JDK 1.1. This extension was released as JFC 1.1, which is sometimes
called "the Swing release." The API in JFC 1.1 is often called "the Swing API."

Note: "Swing" was the codename of the project that developed the new
components. Although it is an unofficial name, it is frequently used to refer to the new
components and related API. It is immortalised in the package names for the Swing API,
which begin with javax.swing.

22.. 22.. 66 SSooff ttwwaa rree EEnnggiinneeee rr iinngg TToooollss

RealJ 3.5 (formerly FreeJava) uses the tools available in the Sun Java Software

Development Kit (SDK), but offers a more convenient Windows-based front end to the
compiler, applet runner and runtime module supplied. The current version comes with
new features previously only found in expensive applications from major software
companies. A new suite of tools gives menu access to some of the more useful SDK tools
that were previously only accessible by using the command line.

 - 25 -

RealJ is an integrated development environment (IDE) for writing and building
programs in the Java language. The tools provided help the programmer develop their
source code file, and allow them to compile their source code using the separate tools of
the SDK. The key features of RealJ are:

• Class and function browser lets you navigate easily through large projects.
• Integrated build window shows compiler output and output of Java programs

while they run.
• Double-click on compiler errors in the build window to view and edit the

source code.
• Syntax colouring in Java source files and HTML files.

RealJ is written in C++ specifically for 32-bit windows machines, which makes it

much faster than IDEs built in Java. As a small, fast, powerful and efficient Windows
front-end to the command line tools of the SDK, RealJ is ideal for small to mid-size
applet and application development projects.

RealJ is used along side the current version of the Java programming language,
Java 2 SDK - Standard Edition, Version 1.4.1. The version of the Java 3D API that was
used to develop the program was 1.3.1 Beta for Win32/OpenGL.

 - 26 -

22..33 AArrcc hhiittee ccttuurree && DDee ssiiggnn PPaatttteerrnnss

22.. 33.. 11 MMooddeell--VViieeww--CCoonntt rroolllleerr

The Model-View-Controller (MVC) design pattern was developed using the
Smalltalk programming language for the creation of user interfaces. The MVC pattern is
surprisingly simple, yet incredibly useful.

 “The goal of the MVC design pattern is to separate the application object (model)
from the way it is represented to the user (view) from the way in which the user controls
it (controller).” 35

The MVC design pattern essentially forces the programmer to think of the

application in terms of three modules:

• Model: The core of the application. This maintains the state and data that the
application represents. When changes occur in the model, it updates all of the
views that are connected to it.

• Controller: The Graphical User Interface (GUI) presented to the user to
manipulate the application.

• View: The GUI which displays information about the model to the user. This is
where the visualisation techniques will be implemented.

updates

View Controller

Model

User

Problem Domain Application

manipulates

sees uses

Figure 2.3.1.1: The relationship between the Model, View and Controller objects.

 - 27 -

The programmer gains many advantages from breaking down the program and
using this Model-View-Controller architecture:

• Clarity of design:
 The public methods in the model stand as an API for all the commands

available to manipulate its data and state. By glancing at the model's public
method list, it should be easy to understand how to control the model's behaviour.
When designing the application, this trait makes the entire program easier to
implement and maintain.36

• Efficient mo dularity of design:

 This allows any of the components to be swapped in and out as the user or
programmer desires, even the model. Changes to one aspect of the program are
not coupled to other aspects, eliminating many awkward debugging situations.
Also, development of the various components can progress in parallel, once the
interface between the components is clearly defined.36

• Multiple views:

The application can display the state of the model in a variety of ways, and
create/design them in a scalable, modular way. Two (or more) views can be using
the same data; they just use the information differently.36

• Ease of growth:

 Controllers and views can grow as the model grows; and older versions of the
views and controllers can still be used as long as a common interface is
maintained. For instance, if an application needs two types of users, regular and
administrator, they could use the same model, but just have different controller
and view implementations. This is related to the similarity with the client/server
architecture - where the new views and servers are analogous to the clients.36

• Powerful user interfaces:

 By using the model's API, the user interface can combine the method calls
when presenting commands to the user. Macros can be seen as a series of
"standard" commands sent to the model, all triggered by a single user action. This
allows the program to present the user with a cleaner, more efficient interface.36

 - 28 -

22.. 33.. 22 MMooddeell--VViieeww--PPrree ssee nnttee rr

 A more recent development has been the introduction of a new design pattern
based on the Model-View-Controller, the Model-View-Presenter (MVP).33

Mike Potel
VP & CTO, Taligent, Inc
January 2000

“Model-View-Presenter or MVP is a next generation programming model for the
C++ and Java programming languages. MVP is based on a generalisation of the classic
MVC programming model of Smalltalk and provides a powerful yet easy to understand
design methodology for a broad range of application and component development tasks.
The framework-based implementation of these concepts adds great value to developer
programs that employ MVP.”

 The overall approach was to decompose the basic MVC concept into its
constituent parts and then further refine them, with the aim of assisting programmers in
developing more complex applications. The first step was to formalise the separation
between the Model and the View-Controller, which is now referred to as a Presentation.
That separation represents the breaking down of a programming problem into two
fundamental concepts: Data Management and User Interface.18

From the data management point of view, the programmer is concerned with
more than just the underlying data representation within a model but also what data
structures, access methods, distributability, etc. are employed.
From the user interface point of view, the programmer is concerned with more than just
drawing an object on the screen, but also what semantic operations are enabled, what user
actions are recognised, and what feedback is given.

Potel suggests that there are several benefits to generalising the model concept.
The first is that it enables a clean separation of the Model and the Presentation. This
would mean that over time the programmer could change the underlying data structures
in the model, for example, and still reuse the same presentation code. Multiple
presentations could be created without re-implementing the underlying model.

 - 29 -

Figure 2.3.2.1: The Model-View-Presenter Architecture.18

 There are numerous benefits of the approach that has been taken to establish a
stronger design pattern. Abstracting out the model permits greater flexibility of use
among multiple users. Having different program models encapsulate the same remote
data allows multiple users to share the same data.18 This confirms what was already
known, the MVC is a good architecture, but it is out-dated. For the purposes of this
project the design will follow the Model-View-Controller architecture but will be flexible
in doing so, to allow for modifications along the lines of tha t which Potel has suggested.

 - 30 -

CChhaapptteerr TThhrreeee

DDeessiiggnn

 - 31 -

33 DDee ss iiggnn

The approach taken, based on the extensive research carried out, was to design a
program, that would be implemented in an Object-Oriented language (most likely Java),
to test Semantic Depth of Field. Given the need to have information to visualise in the
first place it was decided to implement a graph visualisation system. A graph
visualisation system basically contains a series of ‘nodes’ connected by links known as
‘edges’. This provides a meaningful and useful environment in which to test any
visualisation improvements. The concept of a relevancy parameter is associated with each
node, that way the results of the program can be evaluated against the aims of Semantic
Depth of Field.

Given that one of the key aims set out earlier in this dissertation was for a ‘bolt-
on’ system; the classes were all to be written with the flexibility that would enable them
to be deployed in such a fashion. The application was designed to take two forms; a
stand-alone executable program and a series of bolt-on classes for use along-side an
existing system.

The design included the provision of three possible views, but considered the
requirement that additional views may need to be added to the system in the future. The
first view is the Sun Graph-Layout applet 37, there are no visualisation techniques
available in this view; it is included to show the motivation for the project. The two views
developed during this project are the fog view and the emissive light view. The fog view
simulates the effects of Semantic Depth of Field using the linear fog function in the Java
3D API.

33.. 11 DDeess iiggnn:: OOvvee rraa llll AApppplliiccaa ttiioonn

The application was created using a design pattern known as Model-View-
Controller (MVC) architecture. The MVC architecture is elegant and simple, but adopts a
quite different approach than traditional application programs.21 The MVC architecture
was used to provide the application with the flexibility to be easily developed in the
future. The use of such a design pattern also allows the program to be used in conjunction
with other existing programs and data models, which was an essential requirement of the
software described in Chapter 1.

The initial design stated that the program would include a model and a controller
and then any number of view objects. The number of view objects created would depend
on how many useful methods of improving data visualisation were implemented. For
testing purposes (and standalone use of the program) there was a need for an executable
file; this is the class Application. The interactions between this executable application
class, the data model, the controller, and the various views are shown below.

 - 32 -

Application

Controller Model

View 2 View 3View 1

Views

etc…

Key: Instantiates
Ref. to objects

Figure 3.1.1: The proposed layout of the application.

This figure shows the proposed layout of the application, it differs slightly from

the traditional MVC design pattern, but all the benefits remain. Basically the application
class instantiates a controller class and a model. The controller provides the user with a
mechanism for selecting which view to display (or which visualisation aid to apply to the
model). The executable class instantiates a data model and a controller. The controller is
passed a reference to the data model and in turn is able to instantiate any number of
different views. Each view is passed a reference to the data model.

The controller provides the Graphical User Interface (GUI) that the user can
interact with. This GUI appears only if the program is going to be used as a stand alone
entity; otherwise the methods can be called from other external classes. The GUI
basically gives the user a variety of different ways to view the data model. Depending on
the method of visualisation chosen by the user, the controller will create the appropriate
view. An important reason for the use of views for this program is that they allow both
the standard Java API and the Java3D API can be used side by side.

There are some differences between the above design and the conventional MVC
design pattern mentioned earlier. This is due to the assumption that the data will not need
to be modified by the user while the program is running. This would mean that the
controller could interact directly with the views without passing via the model.

The program has implemented methods of making ‘live’ modifications to the data

model (e.g. add a node to the graph) and so there needed to be a way to keep the various
views up-to-date. When a data manipulator method is called in the model, the model will
need to automatically broadcast a “notify” message to all associated views. This notifies

 - 33 -

the views that something has changed and will cause them to re-draw themselves, first
obtaining the new data from the model with an “update” method. The idea is that the
controller would call the manipulation methods in the model and then the model would
tell its associated views to re-draw themselves. If the user was interacting via the views
directly (not the controller) then the views could manipulate the model directly and then
tell themselves to re-draw. These changes could be easily made at a later date due to the
flexibility of the modular design pattern.

33.. 22 TThhee DDaattaa MMooddeell

 The data model is the backbone of this system, this would house all the data that
the rest of the system would manipulate and provide views on. Given that the program
was implementing a graph system to test the visualisations then the program would need
to model ‘nodes’ and ‘edges’. The design for the model is very simple; it needs to be easy
to understand as it is going to be used repeatedly throughout the system.

 There were two objects designed to represent a node and an edge. Although the
object would later be given additional parameters each node would essentially be
required to hold its coordinates, a unique identifier and a name. Each edge would simply
hold the node identifiers that it was connecting (from/to) as well as a unique identifier
and an optional weight. Having implemented these data structures the next step was to
design a model object that could hold arrays of any number of these ‘nodes’ and ‘edges’.

 The model is accessible to all other areas of the program and changes can be
made it to it at run-time. These changes were to be made possible through the inclusion
of some additional methods into the model class, these were required to;

• Add a node
• Delete a node
• Add an edge
• Delete an edge

Given that the number of nodes and edges had to be flexible there were two more
important methods needed;

• Grow an array
• Shrink an array

That was the initial design for the model, as the project progressed it was recognised

that there was a need for some additional methods on the model and one or two additional
node parameters.

33.. 33 TThhee GGrraa pphh SSyyssttee mm

There must be a thorough understanding of data types and representations before
making a decision in choosing or designing a visualisation. 33 The approach taken needed

 - 34 -

to be based on this understanding and so it was realised that it would be beneficial to
apply the techniques to an existing application. The Sun Graph-Layout applet 37

implementation of a dynamic graph system was used as a basis for making these visual
improvements.

 The software would need to implement a ‘graph’ class that would import the node
and edge data from the model (passed to it). There would then be some functionality
much like that in the Sun implementation 37 that would layout the given data and perhaps
perform some threaded activity to dynamically update (animate) the graph. These
methods would simply change the coordinates of the nodes (and therefore edges) and
then call an ‘update’ method that would make the changes in the display.

 Regarding the actual drawing of the graph this class would also be responsible for
setting up a Java3D scene-graph and then adding the results of two additional classes to
its branch-group. These additional classes would use the Java3D API as well as the data
in the model to draw a series of nodes and edges (DrawNode.class & DrawEdge.class).
Given that the actual drawing takes place in these two classes then the ‘update’ method
mentioned earlier would in fact call ‘update’ methods in these two classes instead. Also
within each of these classes would be methods to change the colour of the nodes/edges
and show/hide the node/edge labels. The graph class (Graph3D.class) would incorporate
two additional methods that may or may not be available to any subsequent
visualisations; snap-image, zooming and panning.

 There are two aspects of the graph system that add to the strength of the
application in terms of its use as a visualisation tool; the fact that connections exist
between nodes and that those connections have a well perceived direction. Connectivity
is known to be a powerful grouping principle that is stronger than proximity (a), colour
(b), size (c), and shape (d).8

a. b.

c. d.

Figure 3.3.1: Connectivity as a powerful grouping principle.8

 The direction of an edge is also an important characteristic of the data that needs
to be made clear to the end-user. Vector direction can be unambiguously given by
implementing a colour change along the edge relative to the background colour. 8

 - 35 -

Figure 3.3.2: Colour change to show edge direction (right-left, then left-right).

33.. 44 TThhee VViiee wwss

 It was decided at a relatively early stage that each visualisation (or view) on the
data produced by the program should be based on the same class to save massive
duplication of code, this is the class that is discussed in the section just prior to this
(Graph3D.class). The idea is that there will be some abstract methods to visualise (de -
visualise) some nodes and they will make subsequent calls on different areas of the
program depending on the visualisation technique that has been selected. The technique
chosen will be signalled by a code number that is constant throughout the program.
Currently, signal-1 represents the Semantic Depth of Field view and signal-2 represents
the Emissive Lighting view. So, the graph class will implement the following methods
that will allow for any number of visualisation techniques to be incorporated in the
future;

• Visualise (or De-visualise) a selected set of nodes.
• Visualise (or De-visualise) all nodes.

33.. 55 VViiee ww 11:: SSeemmaa nntt iicc DDeepptthh ooff FFiieelldd

Semantic Depth of Field was to be simulated by using the linear fog function in

the Java 3D API. This works by setting up a ‘fog-bank’ that determines where an item in
the scene needs to be positioned in order to appear fogged. Obviously the further into the
fog bank the denser the fog. The immediate implication of using this method was that the
graph would have to be represented in 2D, not 3D. The reason for this is that the 3rd
dimension (Z axis) would have to be used for ‘depth-cueing’. The basic idea was to
layout all the nodes on a particular plane (e.g. Z=10) and then when a particular node is
deemed irrelevant move it back into the fog bank (e.g. Z=9). Moving a node into the fog
will have the effect of blending the colour of the fog with the colour of the node, if the
colour of the fog is set to be the same as the colour of the background then the node will
appear blurred;

 - 36 -

N

Fog Bank

Fog Front Fog Back

0910

Depth (Z) axis Height (Y) axis

Figure 3.5.1: ‘Side-on’ view of the fog-bank in relation to node position.

‘Focus and Context’ techniques are, in general, methods used to enhance certain

scene elements of interest while still using the rest as (non-distracting) context. Many of
the solutions are distortion oriented in their approach. The parts of interest (relevance) are
enlarged while other parts are scaled down to fit into the remaining space.3 This is not
ideal; there should not be any changes to the interesting parts of the scene as that will
affect the time in which the user can perceive the visualisation. When introducing
Semantic Depth of Field into a graph display system it is important that the information
that is to be deemed relevant is still easily, and quickly, readable. Semantic Depth of
Field does not suffer from this ‘perception delay’ due to the fact that it distorts irrelevant
objects, not the relevant ones.

The node inside the fog bank will appear fogged (or blurred) where as the

appearance of the node that is being visualised will remain un-changed. This is one of the
crucial requirements of Semantic Depth of Field. So, in order to set up this fog there
needs to be the addition of a method to the graph class, and it needs to have the fog
permanently active when visualising with signal-1, the idea is to simply move nodes in
and out of it.

Another important issue with Semantic Depth of Field is that the irrelevant items

need to appear to be the same size, or at least size can not change at any point; this would
disturb the perception and make analysis very difficult. No one can ask the question; to
what extend is Semantic Depth of Field effective or was the success related to the fact
that the size of the nodes was changing? Of course the actual size of the nodes would not
change anyway, but when they move back they will appear further away (and therefore
smaller), this meant that the getting the balance right was going to be crucial;

1. Not moving them back so far that they appear smaller,

 - 37 -

2. Moving them far enough into a fog bank so as they appear significantly
blurred.

This is made yet more interesting by the fact that the fog-bank can not begin until

a point beyond the back of the relevant nodes. Now there needs be a little discussion
about the mechanisms for visualisation and determining which nodes are to be deemed
relevant.

 The user wishes to know what part of the visualisation is more relevant as
compared to others. Given a certain 2D visualisation of some data, for example, a map of
a city, the scene can be extended into 3D, by assigning z-values to each scene object
according to their relevance (as decided on by the user). Semantic Depth of Field extends
this idea to assume that the depth values assigned to scene objects correspond to DOF in
such a way relevant objects lie in the vicinity of the plane of focus, and irrelevant objects
are behind it. 3

The original idea was that nodes would be assigned additional values that

determine their position on a third axis. However it seemed to make more sense simply to
visualise a series of nodes based on their unique identifiers. Given that this project is
implementing relevancy values with two possibilities (relevant and non-relevant) then the
node identifier can either be passed to the visualise method, or not.

Fog is not technically the same as blur but this project has subsequently judged
the effects to be very similar. This is the principle argument behind this work; that fog
can be used as a replacement to a strict implementation of blur. This could have some
interesting implications for data visualisation; although simulating depth of focus is
recognised as an excellent way of highlighting information by blurring everything except
that which is critical, the technique of blur is computationally expensive and has therefore
been limited in its applications.8 It is known then that implementing blur directly can be
difficult and tediously slow. It would be possible to implement an actual blur feature,
instead of simulating or mimicking blur , but to achieve the effect of blur requires that any
point of an image be drawn in a dispersed, circular pattern. That effect can be achieved
by creating multiple translucent copies of the object and arranging them in a circular
motion.22 The problem with this is that it still requires a lot of objects (inefficient, slow
and complicated) and does still not produce particularly amazing results.

 “Unfortunately, simulating depth of focus using a flat-screen display is a major
technical problem. It has two parts: simulating optical blur and simulating the optical
distance of the virtual object.” 8

The difficulty in simulating optical blur has been discussed, the problem with
regard to optical distance, is not actually relevant with SDoF. The issue is that the human
brain decides what it wants to see in focus and what it wants to use as context. With
Semantic Depth of Field that decision is made for the user, or at least they actively tell
the program what they wish to see as being relevant.

 - 38 -

A key part of Semantic Depth of Field is interaction, quite simply blurring objects
is useless if users can not change the focus or see what happens after they have changed
some of the parameters. There are some typical interactions for SDoF applications:

• Selecting the relevance function: If the objects carry different parameters the
user must be able to see the relevancies relating to each parameter. For example,
if a node represented a person, the user may wish to highlight all males or all
people less than 20 years of age (assuming the two parameters were sex and age).

• Changing the threshold: As soon as the display shows SDoF, the user should be

able to change the blur function threshold. In the case of this project it may well
be that this means changing the depth cueing dynamically so as to increase or
decrease the level of fog affecting a given set of nodes.

• Using auto-focus: As soon as a user has seen the relevant information, they may

want to go back to the sharp display. This is done with the auto-focus feature,
which brings all objects back into sharp focus again – after a certain timeout or
after being triggered by users.

In early versions of the software developed in this project the visua lisation of

nodes was based on relevancy functions. The classes developed are designed to be
flexible though, and it was an important requirement that the completed system would be
compatible with a wide variety of data. For that reason the visualisation is based on a list
of node identifiers (as mentioned earlier) and the decision on what nodes are in that list is
left up to the user. The idea being that if the system was integrated with another
application then that application could, with relative ease, make adjustments to their code
to determine which item to visualise.

There was no way of changing the fog threshold once it had been set up due to the
complicated argument discussed earlier (fog density versus node size).

The auto-focus concept is not so difficult to incorporate, there was already the

inclusion of methods to visualise all of the nodes, but there was the addition of a ‘reset’
function that would allow for the graph to be totally re-drawn in case of any ambiguities.

33.. 66 VViiee ww 22:: EEmmiissss iivvee LLiigghhtt iinngg

Another method that this project revealed is the possibility of using emissive
lighting to improve visualisation; the relevant parts of the display could ‘glow in the
dark’. The lighting aspect is of secondary importance to Semantic Depth of Field in this
project and it must be made clear that the research for it was not as thorough.

 Perhaps the key aspect of this approach was that it allowed for a 3D
representation of the graph. So, whereas in signal-1 mode (Fog) the Z coordinate of a
node was restricted to being one of two values (depending on relevancy) it could now be
governed by the layout algorithms. Of course there is a disadvantage of this; the size of

 - 39 -

the nodes will now appear varied and this will significantly affect the analysis of the
results of emissive lighting. This could be covered later by the inclusion of some testing
of this approach in two dimensions.

 The basic approach was to develop a simple function that would darken the colour
of the light that a node was emitting. The easiest way to do this was to extract the RGB
(red, green, blue) components from the colour and then reduce them by some constant
value before using the new RGB values to construct a new (darker) colour.

 - 40 -

CChhaapptteerr FFoouurr

IImmpplleemmeennttaattiioonn

 - 41 -

44 IImmpplleemmee nnttaattiioonn

This chapter will begin with a high-level explanation of the implementation of the

software. There will also be a thorough analysis of the implementation of the core
components of the system as determined by the design (Chapter 3), which will include
segments of the code itself. The code in this section is partial segments, simplified for the
purposes of making a clear explanation of the implementation. For a full listing of all the
source code see the Appendices (A & B).

44.. 11 OOvveerraallll AApppplliiccaatt iioonn

The software was implemented in Java, making much use of the Java 3D API.
There was an implementation of two distinct pieces of software; stand-alone executable
and the ‘bolt-on’ system. At the core of this visualisation system lies an implementation
of a graph system similar to that used in the Sun Graph-Layout applet 37, only extended
into three-dimensions. The system implements two visualisation techniques; Semantic
Depth of Field and Emissive Lighting. These two techniques are presented in their own
‘views’ on the model, along side the Sun Applet, so the controller instantiates three
possible views.

 The stand-alone application has been constructed to allow for the analysis of data
(using Semantic Depth of Field) that is taken in from a file (.mdl). A file loader class is
used to convert a file to a standard data model which is used throughout both systems.
When using the bolt-on classes it is necessary to manually set up the model and use the
add/remove methods that it provides to bring about changes in the model.

 The classes written form the package com.logan.JVS , some of which are used for
the ‘bolt-on’ system, all of which are used for ‘stand-alone’ application. The
implementation consists of 25 classes in total, of which 21 are required when using the
program in its ‘bolt-on’ form. There are 9 classes which make use of the Java 3D API.

 - 42 -

44.. 22 TThhee DDaattaa MMooddeell

 The first, rather straight-forward, stage was to implement two classes to represent
an individual node and edge:

class Node {
 float x;
 float y;
 float z;
 float zFog; // Z axis positon when using fog

 // Additional data required for graph layout function
 double dx;
 double dy;
 double dz;

 boolean fixed; // Motion allowed?
 String label; // Node name
 int ident; // Node unique identifier
 int group; // For grouping (area-code)
}

Fig 4.2.1: The class Node.

class Edge {
int ident; // Unique identifier

int fromID; // From Node ID
int toID; // To Node ID

float len; // Weight
}

Fig 4.2.2: The class Edge.

 The next stage was to implement a mechanism for storage of these nodes and
edges in a data model that could then be passed around the system. This was achieved
with two simple arrays:

public Node[] nodeArray; // Array of nodes
public Edge[] edgeArray; // Array of edges

Fig 4.2.3: The creation of arrays to hold instances of the classes Node and Edge.

The initial design for the data model (Chapter 3) stated that, fundamentally, the
model needed to implement the following functions:

• Add / Delete a node
• Add / Delete an edge
• Grow / Shrink an array

The system was implemented in such a way that edges are added one by one, and
if a node within that edge does not exist (node exists function) then it too is added to the

 - 43 -

model. Each time an addition to the model is made, the counters are incremented and the
relevant array is grown by one. The core of the addEdge method is as follows:

if(nodeExists(temp1) == false) { // From node does not exist

addNode(from);
}
if(nodeExists(temp2) == false) { // To node does not exist

addNode(to);
}
edgeArray = (Edge[])arrayGrow(edgeArray);// Increase size of array by 1
numEdges++; // Increment number of edges
edgeArray[numEdges-1] = new Edge(); // Create new edge

Fig 4.2.4: The key functionality within the method to add edges.

 To prevent the system being limited by an initial assignment dictating how many
nodes and edges the system would hold, two methods were implemented to allow the
growing and shrinking of either array during the execution of the program. The methods
were implemented using reflection to write generic array code.12 The class Array in the
java.lang.reflect package allows the programmer to create arrays dynamically. The grow
method is very similar to the shrink method and both are designed to cope with arrays of
any type:

private Object arrayGrow(Object a) {

Class c1 = a.getClass();
 if(!c1.isArray()) {
 return null;
 }
 Class componentType = c1.getComponentType();
 int length = Array.getLength(a);
 int newLength = length + 1;
 Object newArray = Array.newInstance(componentType, newLength);
 System.arraycopy(a, 0, newArray, 0, length);
 return newArray;
}

Fig 4.2.5: A method to grow the size of an array by one item.

44.. 33 TThhee GGrraa pphh SSyyssttee mm

The software implemented a ‘graph’ class, the class Graph3D imports the node
and edge data from the model (passed to it). The first step that class takes is to collect the
node and edge data from the model:

nodes = model.returnNodes();
edges = model.returnEdges();
numNodes = model.nodeArraySize();
numEdges = model.edgeArraySize();

Fig 4.3.1: The use of the model to retrieve node and edge data.

The next stage was to implement the actual Java 3D elements that would be

necessary for creating a graphical representation of the data. The main steps are creating
the ‘canvas’, then the ‘scene-graph’ and then adding this to the ‘universe’:

 - 44 -

canvas = new Canvas3D(config);
u = new SimpleUniverse(canvas);
scene = createSceneGraph();
u.addBranchGraph(scene);

Fig 4.3.2: The four main steps involved in incorporating Java 3D.

The layout code is quite complex and lengthy and can be seen, in full, in the

Appendices. Basically it centres on the use of a thread and some code which makes
dynamic alterations to the coordinates of a node depending on its current coordinates and
the overall characteristics of the data set:

public void run() {
 Thread me = Thread.currentThread();
 while(relaxer == me) {
 relax();
 if(Math.random() < 0.03) {

Node n = nodes[(int)(Math.random() * numNodes)];
if(!n.fixed) {
 n.x += 200*Math.random() - 50; // Were all 100 - 50
 n.y += 200*Math.random() - 50;
 n.z += 200*Math.random() - 50;
}

 }
 try {
 Thread.sleep(5);
 }
 catch(InterruptedException e) {
 break;
}}}

Fig 4.3.3: The initial stages in implementing the dynamic aspect.

In terms of the actual drawing of the nodes and edges, this is done in two separate

classes, class DrawNode and class DrawEdge. These are both Java 3D intensive classes
and the results of their execution are simply added to the ‘scene’ created in the class
Graph3D:

public BranchGroup createSceneGraph() {

objRoot = new BranchGroup();

JVSnode = new DrawNode(this, signal);
JVSedge = new DrawEdge(this, signal);

objRoot.addChild(JVSnode);
objRoot.addChild(JVSedge);

return objRoot;

}
Fig 4.3.4: The calls resulting in the drawing of nodes and edges.

 There is quite frequent use of a method to make changes in the display following

alterations to coordinates; this method simply results in calls to ‘update’ methods in the

 - 45 -

draw classes that know how to re-draw a node or edge. The drawing of nodes in the class
DrawNode is achieved using Java 3D Sphere objects. The drawing of edges in the class
DrawEdge is achieved using Java 3D LineArray objects. Each edge is drawn with a width
that is determined by its weight, obviously if all the weights are the same (or defaulted)
then the edges will be created with the same width. At no stage in the implementation are
there any changes to the size of a node, this is not permitted by Semantic Depth of Field.

44.. 44 VViiee ww 11:: SSeemmaa nntt iicc DDeepptthh ooff FFiieelldd

 The class Graph3D contains the following method to add the fog to the scene; the
approach requires that the fog is initialised from the onset and then the location of the
nodes on the depth axis (Z axis) is manipulated depending on their perceived relevance:

private void setupFogs() {
 ………

 // Set up the Linear fog - distances from the viewer
 float fogFront = (viewDistance - coordLimit) + 0.1f;
 float fogBack = (viewDistance - coordLimit) + 1.2f;

LinearFog fogLinear = new LinearFog(black, fogFront, fogBack);
 fogLinear.setInfluencingBounds(infiniteBounds);

 ………
}

Fig 4.4.1: The basic steps involved in setting up linear fog.

 The class Graph3D also contains a visualise method that is passed an array of
node identifiers from the graphical user interface. This method then makes the necessary
calls in the class DrawNode to move the nodes accordingly:

public void visualise(int[] relevantNodes) {
 ………

JVSnode.applyFog(allNodes,false); // False -> Fogs
 JVSnode.applyFog(relevantNodes,true); // True -> Un-Fogs
 JVSedge.update();
 // spheres are updated automatically through DrawNode!

………
}

Fig 4.4.2: The method to trigger movement of a group of nodes in or out of the fog.

 The fogging method in the class DrawNode does not actually have anything to do
with fog. The method simply changes the node coordinates, resulting in some nodes
(irrelevant/context) moving into the fog that has already been created. The method takes
as input a Boolean (true/false) that tells the method to either move the nodes forward (out
of the fog), or backward (into the fog):

 - 46 -

public void applyFog(int[] toMove, boolean front) {
float distance; // Distance to position node at

 if(front == true) { // Moving selected nodes to the front
 distance = 10.0f;
 }
 else { // Moving selected nodes to the back (fog)
 distance = 9.0f;
 }
 ………
 for(int y = 0; y < moveLen; y++){ // Each node to be moved
 for(int nodeNum = 0; nodeNum < nodeLen; nodeNum++) {
 int ID = nodes[nodeNum].ident;
 if (ID == toMove[y]) { // Match - move
 nodes[nodeNum].zFog = distance; // Change the depth
 break;
 }
 }
 }
 ………
}

Fig 4.4.3: The actual method to alter the depth coordinates of a group of nodes.

44.. 55 VViiee ww 22:: EEmmiissss iivvee LLiigghhtt iinngg

The class Graph3D also contains a visualise method that is passed an array of
node identifiers from the graphical user interface. It was demonstrated in the previous
section how this method brings about fogging and in this section the same method makes
the necessary calls in the class DrawNode to light the nodes accordingly:

public void visualise(int[] relevantNodes) {

………
JVSnode.applyLight(allNodes,true); // True -> Dims

 JVSnode.applyLight(relevantNodes,false); // False -> Brightens
 ………
}

Fig 4.5.1: The method to trigger the darkening of a group of nodes.

The lighting method in the class DrawNode changes the emissive colouring of

nodes, resulting in some nodes (irrelevant/context) appearing darker than the visualised
nodes, which ‘glow in the dark’. The method takes as input a boolean (true/false) that
tells the method to either brighten the nodes (identifiers passed to it also), or dim them:

 - 47 -

public void applyLight(int[] toColour, boolean darken) {
 ………
 if(darken == true) {
 darkenColour();
 for(int y = 0; y < colLen; y++){// Each node to colour
 for(int nodeNum = 0; nodeNum < nodeLen; nodeNum++) {
 int ID = nodes[nodeNum].ident;
 if (ID == toColour[y]) { // Match - change colour
 ColoringAttributes colrAttr = new
 ColoringAttributes(darkColour,
 ColoringAttributes.SHADE_GOURAUD);
 appear[nodeNum].setColoringAttributes(colrAttr);
 break;
 }}}
 }
 ………
}

Fig 4.5.2: The actual method that sets the new colour of a group of nodes.

 If the Boolean passed is false and the nodes are to be brightened, then the code is
very similar to the above, only the colour is set to the original colour before darkening.
The darkening method, called in the above segment of code, simply subtracts values from
each of the red, green and blue components of the current node colour:

public void darkenColour() {

Color temp = curColour.get();
 int red = temp.getRed();
 int green = temp.getGreen();
 int blue = temp.getBlue();

 red = red - 110;
 if(red < 0) {
 red = 0;
 }
 green = green - 110;
 if(green < 0) {
 green = 0;
 }
 blue = blue - 110;
 if(blue < 0) {
 blue = 0;
 }
 temp = new Color(red, green, blue);
 darkColour = new Color3f(temp);
}

Fig 4.5.3: The method to create the new, darker, colour.

 - 48 -

44..66 CCooddee DDee ssccrriippttiioo nn –– CCoo rree CCllaass sseess

 This section provides a summary of each individual class that is used in the ‘bolt-
on’ system; the more important classes are highlighted in bold. All of the classes in this
section are also required (as well as additional classes) for use of the stand-alone
application. For more detail see the documented source code listing in Appendix A.

44.. 66.. 11 CCllaass ss -- MMooddee ll

 This class represents the Model from the Model-View-Controller paradigm. It
forms the Object that is passed around the program in order to access the details of the
graph elements (nodes and edges). It provides methods to manipulate what it holds (e.g.
add a node) and also methods to report on its status (e.g. the number of nodes). It can
hold arrays (of nodes and edges) of any size through the inclusion of array ‘grow’ and
‘shrink’ methods.

44.. 66.. 22 CCllaass ss -- NNooddee

 This class and the one that follows are very closely related to the class Model.
Node objects are created (and stored in an array) in the class Model and represent the
individual entities in the graph visualisation system. They do not actually represent the
visual representation of the nodes in Java 3D; the nodes are drawn in a separate class
(DrawNode – 4.6.6).

44.. 66.. 33 CCllaass ss -- EEddggee

This class and the one previous are very closely related to the class Model. Edge
objects are created (and stored in an array) in the class Model and represent any
connections that exist between entities in the graph visualisation system. They do not
actually represent the visual representation of the edges in Java 3D; the edges are drawn
in a separate class (DrawEdge – 4.6.7).

44.. 66.. 44 CCllaass ss -- GGrraapphh33DD

This class represents the View from the Model-View-Controller paradigm. This
class is responsible for creating the ‘canvas’ upon which the nodes and edges will be
drawn. It is also responsible for the layout of the nodes and the dynamic aspect of the
graph. It makes calls to two additional classes in order to bring about the drawing of the
nodes and edges; see section 4.6.6 and 4.6.7. The class also provides a substantial amount
of additional functionality, such as that which enables the user to take snap-shots of the
screen, and that which enables zooming and panning of the view.

 - 49 -

44.. 66.. 55 CCllaass ss -- GGrraapphh33DDPPaa nnee ll

This represents the Controller from the Model-View-Controller paradigm, there is
a second controller that is necessary for when the program is ran in stand-alone mode.
This control panel is optional for users of the bolt-on system; if it is not required then
many of the classes in the package would not be needed either.

44.. 66.. 66 CCllaass ss -- DDrraawwNNoo ddee

This class is responsible for drawing a series of nodes based on information in the
model. This is the transition between the representation of a node as an object (class
Node) and the drawing of that node using spheres in Java 3D. This class also contains the
code that allows each node to display a label showing its name. The emissive lighting
technique is implemented solely in this class and the code that moves the nodes in and
out of the fog is also here (the fog itself is actually set up in the view; 4.6.4). The ‘update’
function allows the graph view to bring about changes in the display resulting from the
work of the layout algorithm.

44.. 66.. 77 CCllaass ss -- DDrraawwEEddggee

 This class is responsible for drawing a series of edges based on information in the
model. This is the transition between the representation of an edge as an object (class
Edge) and the drawing of that edge using lines in Java 3D. This class also contains the
code that allows each edge to display a label showing its name.

44.. 66.. 88 CCllaass ss -- DDrraawwGGrriidd

 This class is responsible for drawing the lines that mark the coordinate system.
This is not a particularly important feature but can be useful when panning in 3D.

44.. 66.. 99 CCllaass ss -- CCoonnssttaa nnttss

 This class consists of numerous definitions and objects that are used throughout
the program. All the various colours used by the application are probably the most
important component of this class. It also stores URLs and file/folder names as well as
anything else that is used repeatedly in the application.

44.. 66.. 1100 CCllaass ss -- HHttmmllVViieewweerr

 This is a useful class that provides an external window to view help files, web
sites and a textual representation of the model currently in memory. The idea is simple;
pass it a URL and it returns an elegant little window displaying the results. The textual
representation of the model does not currently work in ‘bolt-on’ mode due to the fact that
it is actually based on the file currently in use, not the model itself.

 - 50 -

44.. 66.. 1111 CCllaass ss -- KKeeyyPPrr iinntt

 This class deals with key presses from the user, the system is not set up to respond
to any of these, though it is straight-forward to change that.

44.. 66.. 1122 CCllaass ss -- IInntteerrss eeccttIInnffoo

 This class was non-existent until the latter stages of the project. It is included to
show the perceived importance of future development in this area of the program.

44.. 66.. 1133 CCllaass ss -- AAbboouutt

 This class creates a small panel detailing a selection of both program and local
environment details.

44.. 66.. 1144 CCllaass ss -- BBaacckkTTooooll

 This class contains the code that allows the user to change the background
displayed in the view (class Graph3D). It is included in the package as ‘proof of concept’
more than anything else. This class is the sole user of three other classes in the system;
class IntChooser, IntEvent and IntListener. These classes are not yet implemented
efficiently and are not discussed here as it seems unnecessary.

44.. 66.. 1155 CCllaass ss -- OOffffSScc rreeee nn

 This class contains the functionality for taking screen-shots of the scene. This
function has proved invaluable in evaluating results as the project progressed and has
helped keep the relevant staff informed of any developments.

 - 51 -

44..77 CCooddee DDee ssccrriippttiioo nn –– AAddddiittiioo nnaall CCllaass sseess

 This section provides a more detailed look at the implementation details of the
additional classes used in the stand-alone version of the system, the more important
classes are highlighted in bold. For more detail see the documented source code listing in
Appendix B.

44.. 77.. 11 CCllaass ss -- FFiillee LLoo aaddee rr

This class liaises with the class Model to allow loading of data from a file. This
functionality was crucial for testing and development of the program prior to the
integration with a database system. It was designed to follow the same procedure as that
which is recommended to integrators using the ‘bolt-on’ system. This means that it reads
each line of a file and calls addEdge in the class Model to fill the data model with the
information in the file.

44.. 77.. 22 CCllaass ss -- CCoonnttrrooll llee rr

 This is the main Controller (MVC) object. This is the user interface that the end-
user is presented with when running the program in its stand-alone form. It does not serve
as a replacement to the optional control-panel (class Graph3DPanel) which provides
control functionality more closely related to manipulating the view itself. This controller
is more concerned with the aspects of model manipulation than view manipulation. It is
assumed that for any manipulation of the model in ‘bolt-on’ mode the designer of that
system will develop their own classes tailored to their specific needs.

44.. 77.. 33 CCllaass ss -- AApppplliiccaatt iioonn

 This is the class that contains the main method that will be called to begin
execution of the stand-alone program. Class Application forms the executable object for
JVS. This class is the only one outside the package, instead it imports the package to
utilise the classes it provides. It calls the constructors of class LoadScreen (to display a
small splash screen) and then class Controller (to load the GUI).

44.. 77.. 44 CCllaass ss -- MMooddee llFFii lltteerr

 This is a small class that provides some file filtering functionality to ensure that
when loading models the user can only view files of the correct format (.mdl).

44.. 77.. 55 CCllaass ss -- LLooaaddSSccrreeee nn

 This is another small class that creates and then displays a brief ‘splash screen’
that entertains the user while the remainder of the program is loaded into memory.

 - 52 -

44.. 77.. 66 CCllaass ss -- SSuunnGGrraapphh

 This is an implementation based on the Sun Graph-Layout applet 37 that can be
used to view an additional representation of the model in memory. Given that part of the
motivation for this project was the lack of visualisation in what was otherwise a useful
view this seemed like an appropriate inclusion.

44.. 77.. 77 CCllaass ss -- SSuunnGGrraapphhPPaannee ll

 This class forms part of the Sun Graph-Layout implementation mentioned above.
Much of the dynamic layout code in the class Graph3D is based on the graph layout
algorithm implemented here.

 - 53 -

CChhaapptteerr FFiivvee

TTeessttiinngg

 - 54 -

55 TTee ss ttiinngg

 The essence of software testing is to determine a set of test cases for the item to
be tested. A test case should consist of:

• Inputs: pre-conditions and the actual inputs.
• Outputs: post-conditions and the actual outputs.

The act of testing entails establishing the necessary pre-conditions, providing the

test case inputs, observing the outputs, and then comparing these with the expected
outputs to determine whether the test passed.14 Two fundamental approaches are used to
identify test cases:

• Functional (or Black Box) Testing
• Structural (or White Box) Testing

The key areas of the program have been tested and one of the benefits of

integration was that there was a physical user-base that could report additional errors or
ambiguities. One of the most important problem areas, highlighted by the integration with
the data-mining application, was the requirement of the previous implementation that
edge weight data was inputted. Indeed in many applications this weight data may not be
relevant, or available. This lead to modifications allowing the passing of ‘pure’ edge data,
with no additional information required. The result is additional flexibility of the program
to handle a more varied form of data input. Perhaps a less important problem, but a
further discovery via integration leads on from the difficulties just mentioned: the
displaying of unnecessary edge labels. If the system was to set up default edge weights
when none were passed to it then labels detailing those weights would almost certainly
not be required. The system was modified to allow for the node and edge labels to be
turned on or off, independently of one another.

55.. 11 FFuunnccttiioonnaa ll TTee ssttiinngg

 The functional approach to software testing considers only the information in the
specification document. 14 The key aims and objectives of this project as governed by the
specification are presented in Chapter 1. Given the nature of this project as primarily an
implementation of visualisation techniques, it was difficult to carry out functional testing.
The completion of objectives is discussed in section 8.2, Chapter 8.

55.. 22 SStt rruuccttuurraa ll TTeess tt iinngg

 The essential difference between this approach and the functional approach is that
the implementation is known and used to identify test cases.14 The essential aspect of the
implementation that needed testing was the data model. The testing of the model would
actually focus around two of the classes in the system; class Model and FileLoader. This
is a shortened summary of the tests, followed by the resulting action of the program;

 - 55 -

1. Wrong file type (e.g. ‘.jpg’) – requires changing view option in the loader dialog.
2. Empty file of the correct extension (.mdl).
3. File full of random characters.
4. Grouping nodes using the ‘area-code’ concept (e.g. “bob/2”).
5. Connecting a node with itself.
6. Creating duplicate edges (Note: opposite direction is not an identical edge).

Figure 5.2.1; Wrong file type. Figure 5.2.2; An empty file.

 Figure 5.2.3; A corrupt file. Figure 5.2.4; Grouping of nodes.

 Figure 5.2.5; Connecting a node to itself. Figure 5.2.6; Duplicating edges.

 - 56 -

55.. 33 UUsseerr IInntteerr ffaaccee TTeess tt iinngg

 The main characteristic of any graphical user interface (GUI) application is that it
is event driven. The user interface for this application aimed to create a ‘guided’ event
sequence.14 In this case this means that the user is guided through the system by the
enabling and disabling of buttons relevant to their current position in the system. For
example, if a user has yet to load a data model into the system then the user interface will
physically prevent them from loading a graph view. There were still various aspects of
the controller (stand-alone application) that needed thorough testing, illustrated by the
diagram:

3) Attempting to
view a graph before
selecting an option

2) Testing user input
when making
changes to the model

6) Attempting to
view the web-site
without a connection

1) Testing user input
when visualising or
de-visualising nodes

5) Testing a request
for properties of a
non-existent node

4) Attempting to use
a graph view before
displaying it.

 - 57 -

Test 1:
The testing of user-input when visualising or de -visualising nodes. The user is

expected to enter data in the format correct format (node IDs separated by blank spaces).
Cancelling of user input is handled and if the user enters anything other than a number or
series of numbers they will be presented with this message;

If the user attempts to visualise any nodes that do not exist then they will see the
next message. A list of node identifiers for the current view is available by clicking
‘Return IDs’.

Test 2.
 The testing of user-input when making changes to the model. There are four
possible problems here;

• Adding a node/edge that already exists

• Deleting a node/edge that does not exist

 - 58 -

Test 3.
 Attempting to view a graph before selection (i.e. clicking on ‘Display JVS
Graph’) will result in the following warning message:

Test 4.
 Attempting to manipulate a graph before it exists will result in the following
warning message:

Test 5.
 A request for the properties of a node that does not exist will result in the same
warning message as when attempting to delete a node/edge when it does not exist.

Test 6.
 If the user attempt to view the JVS web site and the application can not find a
network connection to resolve the URL then the following message will result;

 On the optional control panel (shown below) there is no scope for any input
errors. The buttons representing functionality that at a given time should not be available
are simply turned off and unavailable to the user. The only other issue is the cancelling or
resetting of the colour dialog, which are both handled correctly.

 - 59 -

55.. 44 EErrrroorr HHaa nnddlliinngg

 The Java programming language uses a form of error -trapping known as
‘exception handling’.12 The reliability in the software presented here is, in a large part,
due to the use of exception handling. If an operation can not be completed because of an
error, the program attempts to either:

• Return to a safe state and enable the user to execute other commands;
or
• Allow the user to save their work and terminate the program gracefully.

If a method is unable to complete its task in the normal way it ‘throws’ an object

that encapsulates the error information. The method exits immediately and does not
return any value. This is a very useful feature and was used where possible to deal with
errors in the program. Of course it is still sensible to design software to be as reliable as
possible, but exception handling can provide back-up error recovery. What follows is a
code segment and the results of action following error detection:

if(event.getSource() == properties) {
 try {
 String find = JOptionPane.showInputDialog("Enter node ID");
 String props = model.properties(Integer.parseInt(find));
 JOptionPane.showMessageDialog(Controller.this, props,
 "Node Details", JOptionPane.INFORMATION_MESSAGE);
 }
 catch (Exception e) {
 genericErrorMessage(e);
 }
}

 This is the method for dealing with requests from the user to provide information
on a given node. Placing the code that takes user-input inside a ‘try’ clause implies that if
any exceptional circumstances arise the method will terminate and the ‘catch’ clause that
follows will deal with the error. In most areas of the program there is more advanced
error detection and handling whereby values are analysed and more specific actions can
be taken, but this is demonstrates the basic approach.

 - 60 -

CChhaapptteerr SSiixx

UUsseerr MMaannuuaall

 - 61 -

66 UUss ee rr MMaannuuaall

This chapter is designed to assist the end-user with the installation, operation and
maintenance of the software described in this dissertation. The complete documentation
is available in Appendix C. The program developed has been named Java Visualisation
System (JVS). The software was designed to take two forms; as an add-on to an existing
application and as a stand-alone application. The deployment will differ slightly
depending on the version that has been chosen. The manual is broken up into 6 distinct
Help-Sheets:

1. Helps the user with the installation of the program.
2. Helps the user with integration aspects relating to the Class Model.
3. Helps the user with integration aspects relating to the Class Graph3D.
4. Helps the user with operation of the program.
5. Helps the user with the various views that the program produces.
6. Helps the user with the operation of the optional view control-panel.

 - 62 -

66.. 11 HHee llpp SShheeeett –– 11;; IInnssttaallllaa tt iioonn

This program was not written for use with any particular operating system. The current
version has been tested on all three major operating systems (Win32, Unix/Linux and
Mac). It was designed to exploit the platform-independence that developing in Java
allows.

Follow these simple steps for a pain-free installation:

ü Check that you have the latest Java Software Development Kit (SDK); this is

available from the Sun Java web site.
http://java.sun.com/j2se/downloads.html

ü Check that you have the latest Java 3D SDK. The program was developed using

the OpenGL version of the Java 3D software; there are a number of limitations in
the DirectX release.
http://java.sun.com/products/java -media/3D/download.html

ü Download the JVS software, either from the CD or the web site.

http://homepages.cs.ncl.ac.uk/ben.logan/home.formal/project.htm

ü Install the program by simply copying the downloaded directory to the current

working directory of your project or, if running JVS as a stand-alone application,
anywhere you like!

This is a listing of exactly what the JVS folder contains, if you only plan to use the ‘bolt-
on’ classes then much of this is not required:

JJaavvaa VViissuuaalliissaattiioonn SSyysstteemm
VVeerrssiioonn 11..11

 Installation

HHeellpp SShheeeett -- 11

This document is designed to assist you with installation of the Java Visualisation
System (JVS). It will tell you where to download the program and how to install it
on your machine. Once you have completed installation there are additional
documents designed to help you with the running of the program.

 - 63 -

Directory / File Description
Application.class 'java Application' if the class-path has been set correctly
JVS.jar executable archive of the program
JVS.jpx project file for use with Borland JBuilder
readme.txt a little extra information

com the first directory in the package hierarchy
images images used during execution of the program
models test models available
screenshots screenshots will be stored here

Non-essential Directories;
doc documentation for the program classes
help help files
html nicely formatted html files of the source code
src the actual Java source code
uml UML diagrams of each of the classes

Stand-Alone

If you are running JVS as a stand-alone application then the set-up is now complete, to
run the program simply enter either of the following;

java Application

or

java –jar JVS.jar

Note: For an understanding of how to create new models for use with JVS check the
example files in the ‘model’ directory. There is information on grouping nodes in Help
Sheet – 2.

Bolt-On

If you wish to incorporate JVS into your existing application then it is necessary to add
some additional code to your program. The first step is to include the JVS package at the
top of any of your classes that will require use of it;

import com.logan.JVS.*;

Please refer to Help Sheet - 2 and Help Sheet - 3 for additional help with how to
incorporate the JVS classes into your existing application.

 - 64 -

66.. 22 HHee llpp SShheeeett –– 22;; TThhee MMooddeell

Remember that the first step is to include the JVS package at the top of any of your
classes that will require it;

import com.logan.JVS.*;

The class Model constructor requires no parameters to be passed to it. To create an
instance of the class Model in your program, simply add this code;

Model model = new Model();

The next step, now that you have created a model, is to fill it with your data. The standard
(expected) way of doing this is to add a series of ‘edges’ to the model;

model.addEdge(from, to, weight);

Where ‘from’ and ‘to’ are Java Strings representing the names of the nodes at each end of
the edge. Choose sensible names for the nodes as you will have the option of displaying
them as labels along side each node. The parameter ‘weight’ is a Java Float representing
the weight of the edge. If you are not interested in modelling edge weights then you
should just pass the method ‘0’ and the program will assign a default value.

Alternatively you can add individual (un-related) nodes as follows;

model.addNode(name);

Where ‘name’ is a String representing the name of the node that you wish to create.

JJaavvaa VViissuuaalliissaattiioonn SSyysstteemm
VVeerrssiioonn 11..11

 The Data Model

HHeellpp SShheeeett -- 22

This document is designed to assist you in creating and initialising a model for use
with the ‘bolt-on’ version of the Java Visualisation System (JVS). It will walk
through how to fill the model with data from a database, and then how to perform
operations to manipulate the model once it has been created.

 - 65 -

The other two important methods available are for deleting nodes and edges from the
model, this can be achieved as follows;

model.delEdge(ID);

Where ‘ID’ is a Java Integer representing the unique identifier of the edge that you wish
to remove from the model.

model.delNode(ID);

Where ‘ID’ is a Java Integer representing the unique identifier of the node that you wish
to remove from the model.

Now that you have created a Model, it is time to pass it to the JVS viewer to see the
visual representation of your data. This step is discussed in detail separately in Help Sheet
- 3.

Grouping Nodes:-

If you wish to group nodes together, by demanding that they are located in a given
region of the screen, you need to add an ‘area code’ to the name of the node.

Ungrouped node: Richard
Grouped node: Richard/2

There are four possible locations,
the area codes are shown opposite;

 1

 2

 3

 4

 - 66 -

66.. 33 HHee llpp SShheeeett –– 33;; TThhee GGrraa pphh

Remember that the first step is to include the JVS package at the top of any of your
classes that will require it;

import com.logan.JVS.*;

If you ha ve followed all the steps in Help Sheet – 2 then you are ready to create a graph
view of the data model;

Graph3D graph = new Graph3D(model, signal, panel);

Where ‘model’ is the instance of the class Model that you have just created. The
parameter ‘signa l’ is a Java Integer representing the way in which you wish to view the
graph;

 1 = Fog visualisation technique (2D).
 2 = Emissive lighting techniques (3D).

The third parameter ‘panel’ is a Java Boolean that tells the program whether to load up
the control panel (Help Sheet - 6), set this to true if you want to see the panel. This
provides access to all the basic functionality that is associated with the graph.

After making the above call you should see a new graph view window, displayed in a
separate JFrame over the top of your existing application. Now we will see how to access
the facilities for manipulating this graph and improving the visualisation.

This document is designed to assist you in creating and initialising a graph view
for use with the ‘bolt -on’ version of the Java Visualisation System (JVS). It will
walk through how to use the visualisation techniques and will explain how to
communicate with the graph to achieve the desired effect.

JJaavvaa VViissuuaalliissaattiioonn SSyysstteemm
VVeerrssiioonn 11..11

 The Graph

HHeellpp SShheeeett -- 33

 - 67 -

Perhaps the two most important methods are those which allow you to visualise (and de-
visualise) a set of nodes;

graph.visualise(toVis);

Where ‘toVis’ is an array of Java Integers representing the node identifiers of the nodes
that you wish to view in the context of the others.

graph.removeVis(deVis);

Where ‘deVis’ is an array of Integers representing the node identifiers of the nodes that
you wish to remove from your current field of interest.

There is also a method available to remove the visualisation from all the nodes in the
graph, to save you from passing the method a list of all the node identifiers;

graph.removeAllVis();

The methods available for using the dynamic aspect of the graph visualisation system are
now discussed. The dynamic aspect is responsible for animating the graph. The two most
useful methods here are obviously those that turn this feature on and off;

graph.start();
graph.stop();

The two other methods of interest consist of one which allows you to rearrange the nodes
and another that gives the nodes a slight ‘shake’ to bring them back to life;

graph.scramble();
graph.shake();

As the above calls trigger the generation of new views there is no need for any
operational discussion when running the program in ‘bolt-on’ mode. Skip Help Sheet – 4
and proceed to 5 and 6 for help with understanding the views and operating the optional
control-panel.

Note:-

If you make any changes to the Model while still displaying the graph it will be
necessary to inform the graph so that they can take affect. To do this call;

graph.newData(model);

 - 68 -

66.. 44 HHee llpp SShheeeett –– 44;; OOppeerraa tt iioonn

To run the application; enter either of the following at the command prompt;

java Application

or
java –jar JVS.jar

Once the application has loaded you will be presented with the controller, your first step
should be to load a new model into memory;

‘click’

This document is designed to assist you in the operation of the stand-alone version
of Java Visualisation System (JVS). It will walk through how to use the controller
and explain how it interacts with the various other aspects of the program. For
details on how to use the optional view control-panel read Help Sheet – 6.

JJaavvaa VViissuuaalliissaattiioonn SSyysstteemm
VVeerrssiioonn 11..11

 Operation

HHeellpp SShheeeett -- 44

 - 69 -

Once a model has been loaded you have the option to load a new view, for example;

Once you have made a choice about which visualisation technique to use you should load
up a new graph view of the data (click ‘Display JVS Graph’);

If you wish to visualise some nodes using either fog or emissive light click ‘visualise’,
you will then be presented with the following user-input dialog;

If you wish to make changes to the data model during execution of the program you can
do so using the model sub-panel located at the bottom of the controller;

shows properties
for a given node

shows the list
of nodes

removes an edge
from the model

removes a node
from the model

adds an edge
to the model

adds a node
to the model

‘click’

‘click’

‘click’

‘type ’

 - 70 -

66.. 55 HHee llpp SShheeeett –– 55;; TThhee VViiee wwss

Sun Graph view;

EDGE

NODE

This document is designed to give you a brief overview of what you are seeing
when you are presented with one of the three views available in the Java
Visualisation System (JVS). The views are designed to be minimalist so as to
improve the effects of any visualisation technique, so there is not much to say!

JJaavvaa VViissuuaalliissaattiioonn SSyysstteemm
VVeerrssiioonn 11..11

 The Views

HHeellpp SShheeeett -- 55

 - 71 -

JVS Fog (2D) view;

JVS Emissive Light (3D) view;

NODE

EDGE

EDGE

NODE

 - 72 -

66.. 66 HHee llpp SShheeeett –– 66;; CCoonnttrrooll--PPaa nnee ll

If you are running the stand-alone version of JVS or, if you are in ‘bolt-on’ mode and
have chosen to view the control panel, then this is what you will be presented with;

At present changing the background is not particularly helpful but the functionality is
included as it is an area of future development for the program;

‘click’

Disabled in Fog
(2D) mode

Disabled until
motion is turned ON

This document is designed to assist you with operation of the optional control-
panel that is used to manipulate the graph view in the Java Visualisation System
(JVS). It will walk through how to use the panel and explain how it interacts with
the various other aspects of the program.

JJaavvaa VViissuuaalliissaattiioonn SSyysstteemm
VVeerrssiioonn 11..11

 Control-Panel

HHeellpp SShheeeett -- 66

 - 73 -

Resets the view, if
things get cluttered

Takes a screen-shot
of the graph view

Turns the node
or edge labels
ON or OFF

Turns the dynamic
aspect of the graph
ON or OFF

Changes the colour
scheme used in the
current graph view

 - 74 -

CChhaapptteerr SSeevveenn

RReessuullttss

 - 75 -

77 RRee ss uullttss

 This section will attempt to evaluate the completed application based on the
specification as it is described in Chapter One. Due to the graphical nature of this project
there will be numerous screen-shots in this section. This will hopefully demonstrate the
success that was achieved in implementing the visualisation improvements, particularly
Semantic Depth of Field. There will be a demonstration that interactively visualises many
graphs of different size and complexity to support the claims made in Chapter Eight.

The tests were carried out using people to represent the nodes in the graph and the
edges represent the relationships between those people. As the whole principle of
Semantic Depth of Field (SDoF) is based on relevancy of nodes the gender of the
individuals was used to demonstrate the effect. Gender is also the basis for visualisation
in the Emissive Lighting section. For the purposes of testing; the relevant nodes are
considered to be the females.

The relationships will, in general, be straightforward. At the end of the SDoF
section there will be coverage of a more complex graph (Fig 7.1.7 & 7.1.8). There will be
three graph sizes;

 � Small - 5 nodes � Medium - 20 nodes � Large - 40 nodes

77.. 11 SSee mmaanntt iicc DDee pptthh ooff FFiiee lldd

The following few pages will show the results of applying the implementation of
Semantic Depth of Field to the test data. Each page will show a ‘before’ and ‘after’ shot,
designed to simulate the visualisation as experienced by the user. The pictures show
clearly that there is no distinguishable difference between the nodes before visualisation
and the relevant nodes after visualisation; this is a crucial requirement of SDoF.

 - 76 -

Figure 7.1.1: Before SDoF – Small (5 nodes).

Figure 7.1.2: After SDoF – Small (5 nodes).

 - 77 -

Figure 7.1.3: Before SDoF – Medium (20 nodes).

Figure 7.1.4: After SDoF – Medium (20 nodes).

 - 78 -

Figure 7.1.5: Before SDoF – Large (40 nodes).

Figure 7.1.6: After SDoF – Large (40 nodes).

 - 79 -

Figure 7.1.7: Before SDoF with a more complex graph (20 nodes).

Figure 7.1.8: After SDoF with a more complex graph (20 nodes).

 - 80 -

77.. 22 EEmmiissssiivvee LLiigghhttiinngg

These are more examples of the results obtained using the same test data. The

implementation of the emissive lighting allowed for the graph to be in three dimensions.

Although this chapter was designed to demonstrate the full effect of the

visualisation techniques, the screen-shots are of high quality and this may not be
reproduced in print. It is recommended that, if possible, when reading this chapter the
reader consults the actual document, available on the CD that accompanies this
dissertation.

 - 81 -

Figure 7.2.1: Before Emissive Lighting – Small (5 nodes).

Figure 7.2.2: After Emissive Lighting – Small (5 nodes).

 - 82 -

Figure 7.2.3: Before Emissive Lighting – Medium (20 nodes).

Figure 7.2.4: After Emissive Lighting – Medium (20 nodes).

 - 83 -

Figure 7.2.5: Before Emissive Lighting – Large (40 nodes).

Figure 7.2.6: After Emissive Lighting – Large (40 nodes).

 - 84 -

The 3D system allows viewing from different distances and angles;

Figure 7.2.7: Panning in the 3D graph – Medium (20 nodes).

Figure 7.2.8: Zooming in the 3D graph – Medium (20 nodes).

 - 85 -

77.. 33 OOtthheerr RReess uulltt ss
 There are numerous other aspects of the application that do not fit neatly under
the previous headings. The screen-shots on the following few pages demonstrate;

1. The effect of grouping nodes together.
Grouping works in 2D (Fog) or 3D (Emissive Light) and simply groups nodes

together according to an ‘area code’ that is attached to the name of the node. There
are four such area-codes (1, 2, 3, and 4) that refer to the top-left, top-right, bottom-left
and bottom-right quadrants of the screen respectively. The grouping is ignored once
motion is turned allow for the graph layout algorithm to arrange the nodes in a more
presentable fashion.

2. The effect of the graph layout algorithm.

3. The importance of the number of relevant nodes.

This is a crucial issue with Semantic Depth of Field that appears to have been
avoided in the publications so far. The reason, perhaps, is that it is a general
visualisation issue. The user must give careful consideration to exactly what they
wish to visualise. The effects of techniques such as Semantic Depth of Field are far
more impressive when visualising less than half the total number of nodes.

4. The use of different colour schemes.

This aspect of the program demonstrates that it is possible to use a wide
variety of colours to illustrate the benefits of Semantic Depth of Field. This is an
obvious advantage over colour-based visualisation systems as it allows for black and
white rendering as well as allowing for the needs of colour-blind users.
Experimentation revealed that the results are most pleasing when using bright colours
on a dark background (hence the yellow on black scheme used in this Chapter).

5. The perceptual benefit of hiding labels.

Another conclusion of this project is that, when it comes to visualisation, the
less on-screen distraction the better. These shots demonstrate the improvement in
visualisation achieved by hiding the name labels. Up until now the labels have been
visible to demonstrate that the correct nodes are being visualised.

6. A more accurate implementation of blur.

This screen-shot shows the result of a more accurate implementation of blur
that uses multiple spheres of differing transparencies to draw blurred nodes. The
problem with this approach and the reason fog was used instead is because of the
overhead associated with using multiple objects. It is accepted in the world of
Computer Graphics that a true blur effect is a challenging implementation.

7. Edge thickness according to edge weight.

The use of an algorithm to determine the width of an edge based on the weight
of that edge, this can prove useful when visualisation requires that edge labels be
turned off.

 - 86 -

Figure 7.3.1: The effect of allocating each node a group (2D).

Figure 7.3.2: The effect of allocating each node a group (3D).

 - 87 -

Figure 7.3.3: Before the Graph Layout takes control (2D) – Medium (20 nodes).

Figure 7.3.4: After the Graph Layout takes control (2D) – Medium (20 nodes).

 - 88 -

Figure 7.3.5: Visualising ¼ of all nodes – Medium (20 nodes).

Figure 7.3.6: Visualising ½ of all nodes – Medium (20 nodes).

 - 89 -

Figure 7.3.7: Visualising ¾ of all nodes – Medium (20 nodes).

 This dissertation suggests a simple solution to this problem; employ reverse
visualisation. In the example shown in figure 7.3.7 it would, perhaps, be more sensible to
be visualising those exact nodes that are being used as context at the moment. That way
the demonstration would clearly show that the nodes were in the minority, more so than
the current view does. For example, if the highlighted nodes represent those people who
like the taste of chocolate, and the purpose of the demonstration were to show that many
people do indeed like chocolate then perhaps it would make more sense to visualise those
people who do not like chocolate.

 - 90 -

Figure 7.3.8: Before SDoF with a different colour (purple) – Medium (20 nodes).

Figure 7.3.9: After SDoF with a different colour (purple) – Medium (20 nodes).

 - 91 -

Figure 7.3.10: Perceptual benefit of hiding labels (before SDoF) – Medium (20 nodes).

Figure 7.3.11: Perceptual benefit of hiding labels (after SDoF) – Medium (20 nodes).

 - 92 -

Figure 7.3.12: Using transparency to simulate optical blur.

Figure 7.3.13: Using edge weight to determine edge width.

 - 93 -

77.. 44 RReess uullttss ooff SSooffttwwaarree IInnttee ggrraatt iioonn

 OOne of the aims of this project was to implement a graph visualisation system that
could be easily integrated with another program. The results of that successful integration
are demonstrated in this section. The application is designed to cope with various forms
of data and so it was not difficult finding another project to test the integration with. Mr
Jon Bainbridge was developing a piece of software designed to make information
extraction easier. As Chapter One had discussed the perceived importance of combining
visualisation techniques with data-mining methods this seemed ideal. The host
application involves the collection of literature from a database and then the extraction of
relevant information from that literature. The software is connected to the Medline
medical database and is currently set-up to extract information on protein-protein
interactions. This meant that Jon could follow the simple steps in the user manual for JVS
and set up a data model with the edges representing these protein interactions. The ‘bolt-
on’ classes can then generate graphical representations of that data and the user of the
combined system then has access to the visualisation techniques that are at the core of
this project. It was a thoroughly successful integration and proves that this project
developed a piece of software that adhe res to the principles of modular design and
software integration. What follows are the results of just one of the integration-testing
sessions that were carried out:

Figure 7.4.1: The results in the host application.

 - 94 -

Figure 7.4.2: A view of the data received through integration.

Figure 7.4.3: A view of the data received through integration.

 - 95 -

CChhaapptteerr EEiigghhtt

DDiissccuussssiioonn

 - 96 -

88 DDiiss ccuuss ss iioonn

 There will be both positive and negative conclusions drawn from the work that
was carried out and a retrospective look back on what has been learned. This chapter will
also provide a discussion on the various aspects of the program that could be developed
in the future.

88.. 11 SSuummmmaarryy ooff PPrrooggrraa mm FFeeaattuurreess

 In summary, the application provides graph visualisation using two distinct
techniques, both of which generate presentable, clear results. Perhaps just as importantly,
the application was successfully integrated with a data-mining application. Due to the
flexible nature of the data model this means that the visualisation system could be applied
to literally any data set that involves a configuration of nodes and edges, or indeed just
nodes. Summary of the key features of the application:

• Semantic Depth of Field; realisation of concept & implementation

• Emissive Lighting; generation of concept & implementation

• Proven ease of integration; incorporate visualisation into existing system

• Dynamic layout algorithm; far more presentable than random positioning

• Test suite (with GUI); experiment with techniques, manipulate test data

• Error handling (on model); robust system of handling external data input

88.. 22 CCoommpplleett iioonn ooff OObbjjeecctt iivveess

 This section will discuss the completion of objectives making a distinction
between what has been achieved and what was planned. To compare the finished
application with its original specification (Chapter 1), most of the original objectives
were met.

The primary objective of this project was to implement Semantic Depth of Depth
and evaluate its ability to provide high-quality focus and context visualisation of data.
While there is room for argument over whether the fog implementation is technically
Semantic Depth of Field, the results clearly show that it has a similar effect. The key aim
was kept in mind throughout the course of the project; the result is a system that has
achieved, to a high degree, what was expected of it. The basic idea of any ‘focus &
context’ approach to visualisation is to enable the user to have the primary object of
interest presented in detail while at the same time having an overview (or context)
available.25 The software allows the user to decide which objects are of primary interest
and then presents a view of that data, clearly highlighting those objects while retaining
the others as context.

 - 97 -

The secondary objective was to further improve visualisation, or at least attempt

to, by implementing an additional technique. This technique was developed during the
research phase of this project and named Emissive Lighting. Again, the technique was
successfully implemented, although the results did not match those of the SDoF
implementation. Aside from the actual method used to visualise the nodes, the technique
was implemented in the same way as SDoF, with the aim of generating clear, concise and
consistent source code.

Another objective was to produce a system that could model different types of

data and be easily integrated with another application if necessary. The simple way in
which the design models nodes and edges ensures that the completed application could
indeed be applied to various forms of data. Given the intense focus on design patterns at
the design and implementation stage, the software can easily be integrated with another
application. This was proven by a successful integration with a data-mining application.

The implementation of a dynamic graph layout algorithm was another objective

that was successfully achieved. The algorithm itself is not particularly revolutionary. The
important point is that it demonstrates that one can be easily implemented along side
visualisation techniques that themselves make changes to the physical layout of the
entities in the graph. The system can simultaneously re-arrange the nodes in two
dimensions (to make them more presentable) and make changes to the position of nodes
on a third axis (to move them into fog).

The final two objectives, as specified in Chapter One, were probably not so

important. They were both achieved; the application can provide two visualisations
(based on an individual model) along-side the original Sun Graph-Layout applet. That is
useful in terms of demonstrating the importance of data visualisation, and the lack of
understanding of data that can result from implementing no visualisation technique (as in
the Sun applet). The web-page for this project served to update staff on the progress of
the work, as well as providing assistance for use of the application (such as the API).

88.. 33 FFuuttuurree WWoorrkk

 Although the application did achieve all of its objectives (to some degree), as the
work progressed there were an increasing number of areas of the program that deserved
more attention than was possible. This is a summary of the work that would ideally be
carried out on the program in the future, the list is roughly ordered according to the
perceived importance of work in a particular area;

Two issues regarding the implementation of SDoF;
• Blurring of edges – “things that do not need to be blurred should not be” figure

5.1.8
• Unreadable fogged labels – “blurred text should remain readable”

• Picking to allow for ‘dragging’ and ‘dropping’ of nodes in the graph.

 - 98 -

• Collision Detection to avoid colliding nodes.
• Investigation of the performance implications of using different shapes to

represent nodes.
• A review of the implementation of edges, in particular, arrow directions – pattern

masking lines for arrow effects.
• Introduce a custom universe specific to this program that would make it easier to

understand the current methods of setting up views and fog.
• Low-performance mode for low-spec systems.
• Textual view of data model in ‘bolt-on’ mode (limited importance).

• Aspects of Human-Computer-Interaction (HCI). In particular, Usability

Engineering – evaluation of the user interface, and user task analysis (GOMS).9
• Complete the conversion to an applet to allow for on-line demonstration of the

system.
• Produce a more thorough demonstration showing just how vast the applications of

this technology are. The program could easily be used along-side a file
management system (e.g. windows explorer), for example, to improve
information visualisation.

Even though an interactive system may be properly designed, it will not

necessarily be completely intuitive to use or understand. There should be no assumption
that a well designed system should come without help and documentation. 9 Help and
documentation are a crucial aspect of any software project. Regrettably there was little
time built into the project plan for generation of such documents. There is plenty of scope
for future work in this area.

At the present time one of the limitations of the application is the number of
nodes that it can handle. This is due to the size of the addressable coordinate field (which
can be grown in the future). The number of nodes is currently kept relatively small due to
the performance implications but any future work could look into the exact capacity of
the system.

Had there been more time available, this project would have undertaken a more
thorough investigation into the possibility of using exponential fog which could have
resulted in the combination of a fog blending factor with a relevancy function, it would
have also allowed for a three-dimensional graph with Semantic Depth of Field. The use
of a relevancy function would enable the visualisation system to implement multiple
levels of relevance; however, it is known that SDoF only works effectively with two or
three groups. The use of transparency to simulate blur would also have been given some
further attention.

88.. 44 CCoonncclluuss iioonnss

 The use of Semantic Depth of Field is still in its infancy, yet this application has
proven that an improvement in visualisation can be achieved by using the technique, or
something similar. No doubt over the next few years there will be further attempts to

 - 99 -

implement the effect in different surroundings and, hopefully, some thorough analysis of
the results in terms of perceptual psychology. Following personal communications with
Robert Kosara (Head of Visualisation Research, VRVis) it was decided, at a fairly late
stage, to include a third visualisation in addition to the ‘fogging’ and ‘emissive lighting’.
As has already been discussed earlier, the approach taken in tackling Semantic Depth of
Field involved the use of fog, which is not technically the same as blur. There was the
assumption that a true blur effect was not possible, but this was not proven. There is now
evidence in the results section (Chapter 7, Figure 7.3.12) that blur has been investigated,
but the conclusion is that the use of multiple transparent spheres to represent one blurred
node is not currently viable in a graph system that may wish to model hundreds of nodes.
Although the use of transparency is perhaps the only thing closer to blur than fog (in Java
3D), it is still not technically a correct implementation, i.e. a picture taken of a sphere that
is out of focus would look different. On top of that, the implementation of transparency in
Java 3D is actually very similar to the way in which fog works, blending object colour
with background colour.6 The advantage with fog is that there is no need for the creation
of multiple Shape3D objects, which it is known has serious performance implications in
Java 3D.

The discussion above lead directly to the real conclusion of this work; in order to satisfy
the aims of Semantic Depth of Field, and indeed other visualisation techniques, it is
necessary to ignore any pre-conceptions about how to go about achieving such goals and
be truly flexible in any approach to implementing a solution. It is recognised that in order
to realise the essential ideas of any ‘focus & context’ technique in new situations of
computer use, it is necessary to move beyond the traditional notions of these
techniques.25 It still seems fair to say that the system does provide a viable alternative (to
true SDoF) in the short-term until technological advances allow for the implementation of
a truer blur effect, without hampering performance.

 The use of Emissive Lighting is an even more recent proposal than Semantic
Depth of Field. To the best of this writer’s knowledge this potentially useful visualisation
technique has not been recognised elsewhere. The initial results, although not as
impressive as those of the SDoF implementation, are very promising. With more work on
the method used to darken the colours the result could be even more pleasing. One of the
requirements of any visualisation system is that a very large network may be displayed on
the screen and zooming-in to any selected part of it is allowed to make that part legible.30

The Emissive Lighting effect, because of its lack of dependence on ‘depth-cueing’, does
make this possible.

 There is the belief that an individual may need to write their own program to
visually represent the specific data that they have collected. 30 A further conclusion of this
project, although it may seem like an ambitious statement, is that this is unnecessary
providing the design of the data model is flexible and intelligent. It is the closeness of
mapping between the data model implemented in this software (node & edge) and the
fundamental forms of data (entity & relation) that is the key to the success of the
integration and, ultimately, the use of the system to visualise data.

 - 100 -

BBiibblliiooggrraapphhyy

 - 101 -

BBooookk ss;;

[1] Tufte, E.R. (1990) Envisioning Information. Connecticut, Graphics Press.

[2] Schroeder, W., Martin, K., Lorensen, B. (1998) The Visualization Toolkit. 2nd ed.

New Jersey, Prentice Hall.

[3] Schneiderman, B. (1998) Designing the User Interface: Strategies for Effective

Human-Computer Interaction. 3rd ed. Addison-Wesley.

[4] Wilson, L.B., Clark, R.G. (2001) Comparative Programming Languages. 3rd
 ed. Harlow, Addison-Wesley.

[5] Goldstein, E.B. (2001) Sensation and Perception. Wadsworth Publishing.

[6] Walsh, A.E., Gehringer, D. (2002) Java 3D API Jump-Start. New Jersey, Prentice

Hall.

[7] Angel, E. (2000) Interactive Computer Graphics: A Top-Down Approach with
 OpenGL. 2nd ed. Addison-Wesley.

[8] Ware, C. (2000) Information Visualization: Perception for Design. London,
 Academic Press.

[9] Dix, A., Finlay, J., Abowd, G., Beale, R. (1993) Human-Computer Interaction.

Hemel Hempstead, Prentice Hall.

[10] Di Battista, G., Eades, P., Tamassia, R., Tollis, I. (1999) Graph Drawing:

Algorithms for the Visualization of Graphs. New Jersey, Prentice-Hall.

[11] Gross, J., Yellen, J. (1999) Graph Theory and its Applications. London, CRC

Press.

[12] Horstmann, C., Cornell, G. (2003) Core Java 2: Fundamentals. California, Sun

Microsystems Press.

[13] Bailey, D.A. (1999) Java Structures: Data Structures in Java for the Principled

Programmer. Singapore, McGraw-Hill.

[14] Jorgensen, P.C. (2002) Software Testing: A Craftsman’s Approach. 2nd ed. Boca

Raton, Florida , CRC Press.

[15] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Phillips, R.L. (1994)

Introduction to Computer Graphics. Addison-Wesley.

 - 102 -

PPuubbll iiccaatt iioonnss && TTeecchhnn iiccaa ll RReeppoorrttss ;;

[16] MacCormack, A., Kemerer, C.F., Cusumano, M., Crandall, B. (2002) Flexible
 Models of Software Development: Must we trade off efficiency & quality?
 IEEE Software [submitted].

[17] Kosara, R., Miksch, S., Hauser, H. (2001) Useful Properties of Semantic Depth of

Field for Better F+C Visualization. VRVis Research Centre, Vienna, Austria.
Technical Report, VRVis-028.

[18] Potel, M. (1996) Model-View-Presenter: The Taligent Programming Model
 for C++ and Java. Taligent Inc. {since merged into IBM}. Technical Report.

[19] Baudisch, P., Good, N., Stewart, P. (unknown date) Focus Plus Context Screens:

Combining Display Technology with Visualization Techniques.

[20] Munzner, T. (2002) Information Visualization. IEEE Computer Graphics and
 Applications, 22 (1) January, pp.20-21.

[21] Shneiderman, B. (2002) Inventing Discovery Tools: Combining Information
 Visualization with Data Mining. Information Visualization, 1 (1) March, pp.5-
 12.

[22] Cockburn, B. (2002) Application of Semantic Depth of Field to Visualisation
 Problems in Bioinformatics. MSc. dissertation, University of Newcastle-upon-
 Tyne.

[23] Dogrusoz, U., Feng, Q., Doorley, M., Frick, A. (2002) Graph Visualization
 Toolkits. IEEE Computer Graphics and Applications, 22 (1) January, pp.30-
 37.

[24] Bruß, I., Frick, A. (unknown date) Fast Interactive 3-D Graph Visualization.

[25] Björk, S., Redström, J. (unknown date) Redefining the Focus and Context of

Focus+Context Visualizations.

[26] Kosara, R., Miksch, S., Hauser, H. (2002) Focus & Context Taken Literally.
 IEEE Computer Graphics and Applications, 22 (1) January, pp.22-29.

[27] Kosara, R., Miksch, S., Hauser, H. (2001) Semantic Depth of Field. VRVis
 Research Centre, Vienna, Austria. Technical Report, VRVis-001.

[28] Ware, C., Purchase, H., Colpoys, L., McGill, M. (2002) Cognitive Measurements

of Graph Aesthetics. Information Visualization, 1 (2) June, pp.103-110.

 - 103 -

[29] Kosara, R. (2001) Semantic Depth of Field – Using Blur for Focus & Context
Visualization. Ph.D. thesis, Vienna University of Technology.

[30] Cawkell, T. (2001) Progress in Visualisation. Journal of Information Science,
 27 (6) December, pp.427-438.

[31] Chen, C. (2002) Information Visualization. Information Visualization, 1 (1)
 March, pp.1-4.

[32] Song, M. (2000) Visualization in Information Retrieval: a three-level analysis.
 Journal of Information Science, 26 (1) February, pp.3-19.

WWeebb--PPaaggeess;;

[33] Unknown Author (2001) Model-View-Presenter Framework. [Internet] Object

Arts Ltd, London. Available from:
<http://www.object-arts.com/OldStuff/Overviews/ModelViewPresenter.htm>
[Accessed 20 October, 2002].

[34] Burbeck, S. (1992) Applications Programming in Smalltalk-80: How to use
 Model-View-Controller. [Internet] Department of Computer Science,
 University of Illinois at Urbana-Champaign. Available from:

<http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html> [Accessed 24
September, 2002].

[35] Wheeler, S. (1996) The Model-View-Controller Architecture. [Internet] CERN,

European Laboratory for Particle Physics. Available from:
<http://rd13doc.cern.ch/Atlas/Notes/004/Note004-7.html> [Accessed 24
September, 2002].

[36] Baray, C. (1999) The Model-View-Controller Design Pattern. [Internet]
 Department of Computer Science, Indiana University. Available from:
 <http://www.cs.indiana.edu/~cbaray/projects/mvc.html> [Accessed 22
 September, 2002].

[37] Hagen, J. (1996) Graph Layout; examples. [Internet] Sun Microsystems, Santa

Clara, California. Available from:
<http://java.sun.com/applets/jdk/1.0/demo/GraphLayout/index.html> [Accessed
23 September, 2002].

[38] Campione, M., Walrath, K. (1997) About the Java Technology. [Internet] Sun

Microsystems, Santa Clara, California. Available from:
<http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html>
[Accessed 2 October, 2002].

 - 104 -

